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Summary: This paper deals with design of
an automatic detector for classification of
selected cardiac arrhythmias. The
proposed algorithms employ the
continuous wavelet transform (CWT)
combined with an analysis of its contour
envelopes. The CWT was used in
a detector of R-waves, to distinguish
between normal and abnormal beats, and
for detection of atrial premature
contractions (APCs) and premature
ventricular contractions (PVCs). The
algorithm was validated by extensive
testing on the MIT/BIH database.
Searching for a local maximum in wavelet
contour envelopes efficiently detects R-
peaks. The overall accuracy of its detection
tested on 48 half-hour signals is 99.5%.
Two types of classifications were tested: 1.
classification based on the contour
envelope and the detection of significant
points with overall accuracy 94.6%, 96.1%
for the sinus rhythm (SR), 30.4% APCs,
71.2% PVCs and 2. the localization of
maximum of square modulus of CWT
coefficients in the area of QRS complex for
the determination of PVCs between SR,
right bundle branch block (RBBB), APC
and other narrow complex arrhythmias
with the accuracy 96.8%.
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Introduction

Automatic processing systems are fre-
quently used in medical data analyses.
Modern medicine generates huge
amounts of data giving an opportunity to
search for explicit understanding of
physiology. New methods can help in
dealing with this problem, they can simplify
and usually speed up the processing of
large volumes of data. The physician's
work is a typical example. The physician
has to decide very frequently upon
a patient's diagnosis on the basis of
a number of numerical values measured
during an examination. Orientation in this
amount of data is not always easy and
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unambiguous. Therefore there are many
consultation systems that help minimise
human errors.

The modern analysis of the electrical
activity of the heart uses simple and
sophisticated algorithms of digital
processing signals implemented in
electrocardiographs [1,2,4-6,8-18]. We
can sort these algorithms into three
groups: working in time [8], frequency [5]
and time-frequency domain [10-18]. First
two classes belong to classical methods,
which are successful in many clinical
tested applications and analysis of ECG,
detection of the QRS complex [4], its
beginning and end, analysis of deviation of
the ST segment, analysis of variability of
heart rate, etc. New algorithms work in the
time-frequency domain [10-18] and
combine some advantageous characte-
ristics known from classical methods —
mainly they allow the frequency analysis
with time information about analyzed
features. Using the simple time analysis
does not provide high quality results
because of low sensitivity. Itis caused by a
small amplitude of the changes. The
frequency analysis increases sensitivity,
butit cannot tell in which phase of the heart
cycle these changes originated.

At present, the wavelet transform (WT) is
the most used method of the time-
frequency analysis [10-18]. WT is popular,
because it is implemented simply and its
results are very well interpreted like the
Fourier transform, using the frequency
analysis. Many variants of WT provide
large possibilities in selection, from a
redundant detailed analysis to a fast
analysis with minimum output data.
Selection of a particular variant of the WT is
based on the specific application
(suppression of the noise, marking time
and frequency components of useful
signal, detection of important points,
detection and observing important
changesinwavesintime, etc.).

In this paper we explore the use of the
continuous wavelet transform in the
analysis of beat morphologies and for ECG
classification. The aim of this work was to
distinguish different ECG arrhythmic
patterns and enable an abnormality
diagnosis. An arrhythmia classifier based
on the continuous wavelet transform has
been presented to identify normal beats,
abnormal premature ventricular contra-
ction (PVC) and atrial premature
contraction in ECG. The occurrence of an
arrhythmia is unpredictable. The purpose
of this study is to develop a method using
the CWT coefficients of ECG waveforms.
Two kinds of cardiac arrhythmia, PVC
(premature ventricular contractions) and
APC (atrial premature contractions), which
are the most common types of cardiac
arrhythmias in ECG monitoring, will be
discussed.

Methods

The wavelet transform (WT) is based on
the use of a set of mathematical analyzing
functions called "wavelets". Wavelets
provide decomposition of the ECG signal
into a set of wavelet coefficients. The
analyzing functions are generated from a
generally complex-valued function (t) by
dilation and shift in time. Each analysing
function ,,(f)=w((t-b)/a) has its own
parameters — time localization defined by
shift b and a frequency band defined by a
dilation factor a. Each resulting wavelet
coefficient corresponds to the measure-
ment in the signal in a given time instant
and a given frequency band. Wavelet
coefficients can be easily calculated using
the following definition equation of the
continuous wavelet transform (CWT)

1 % ft—h )
wman-L v [T]f.ta‘.t (1)

where f(t) is an ECG signal to be analysed
and * stands for complex conjugate.
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Further background information concer-
ning continuous wavelets and their
properties can be foundin [3, 6] and [16].

ECG components delineation

The proposed method is composed of two
main parts: 1. continuous wavelet
transform with discretized output, and 2.
classical time-domain processing
algorithms.

WT (Eq. (1)) results in a two-dimensional
function which represents the signal in the
time-frequency domain. For an easier
analysis of the resulting function WT(a,b),
we may use its absolute value
abs(WT(a,b)). Further, the function should
be normalized for a later analysis. Thus,
Eq. 1 canbe rewritten as

Wit &= ahSIWTIa,E:-IIfﬂt}fiag:[ahsli‘!’?’la,&ll] (2).

An example of the ECG signal analysis
using CWT with the Morlet wavelet is
shown in Fig.1. Three main waves/peaks
can be found in the signal (panel (a): small
P-wave marked by (1), high QRS-complex
marked by (2) and high T-wave marked by
(3)). The time-frequency spectrum of the
signalis shown as a shaded contour plot of
WTabs(a,b) (minimum values in white,
maximum values in black). One can easily
find the three wave components
mentioned above. However, WT, (a,b) in
Fig.1(b) is not suitable for simple and
efficient detection of particular waves.

The image of WT_,(a,b) can be simplified
by taking a z-axis slice for a chosen value
Le<0;1>. Thus, contourimage C, is

¢ {ab)= 1 if BT, (ableil-g1+s
2 0 if ofherwise (3)

where ¢ is a small value. An example of a
contour image is shown in Fig.2(b). Only
that part of the contour, which is the closest
to the highest frequency, is considered (4).
Such a contour is called a contour
envelope ECandis defined as

ECH|=

E:A.?gj(?.b]-ﬂ [.-:I] )

for all b's. The contour envelope ECis a 1-
D function. An example of the contour
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Figure1. (a) ECG signal and its (b) modulus of CWT. P-wave (1), QRS-complex (2), and T-
wave (3) are marked.
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Figure 2. Contour envelope generation: (a) ECG signal, (b) slice through time-
frequency spectrum of the signal, (c) contour envelope.

envelope is in Fig. 2(c). EC is further
formed by classical signal processing
algorithms. In the proposed method, EC is
smoothed using a low-pass Lynn's filter
defined as

O

H(z) = (5)-

1-=

The filtered EC is used for delineation of
signal components (Fig.2 EC with a cutting
level for QRS detection, Fig. 3 EC with
a cutting level for other components).

Simply, the EC is thresholded to remove
any noise and suppress the widening effect

due to the above described low-pass
filtering (Fig. 3(c)).

While all small value areas are zeroed, all
values above the threshold are set to 1.
Then, ascending and descending edges
represent on-sets and off-sets of particular
signal components — P-wave, QRS-
complex, and T-wave (Fig.3(d)). The high
cutting level L is used only for QRS
complex detection to remove other
components and avoid false detection
(Fig.2) and the low level for other waves to
make them visible in the contour envelope
(Fig.3). Inner edges are removed and on-
sets and off-sets determined.
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Figure 3. Detection of P-wave, QRS-complex and T-wave using Haar wavelet. (a) ECG signal,
(b) contour envelope, (c) filtered conto

APC/PVC classifier

APC/PVC classifier distinguishes between
APC (atrial premature contraction) and
PVC (premature ventricular contraction).

We analyze the area before the detected
QRS complex for the detection of APC. The
premature P-wave can be detected in the
wavelet contour envelope using the simple
wavelets. Fig.4 shows the application of
the Haar wave, scale 1-32, and the cutting
level:

L=0125mean T,

We can see structures in the wavelet
contour envelope before detected QRS,
these structures detect the P-wave, which
has an irregular P-P interval or an
abnormal shape. This contour is also
filtered for better performance. Detection
edges are processed by a decision
algorithm.
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Figure 4. Atrial premature beat: (a) ECG
signal, (b) contour envelope.
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Ja bl (6).

The detected QRS complex has a normal
width and it can distinguish APC between
PVCs.

The width analysis of QRS in the contour
envelope of square modulus of coefficients
was done for the level
L=8*mean(WT (a,b)), scale 1-32 and
Mexican hat wave. The width analysis is
documented in Fig. 5. Wide QRS
complexes of PVCs has also wide
response in contour envelope (Fig. 5(a)
versus Fig. 5(b)). EC is filtered,
thresholded and further processed by
classical algorithms. The next analyzed
feature is the R-R interval. A three RR

en9

interval sliding window [RR,, RR,, Rr.] and
an averaged RR interval is used to classify
a middle RR, interval (Fig. 4). The R-R
interval surrounding the premature
ventricular beat is usually equal to double
of the basic R-R interval (Fig. 6) and longer
than double for APC (Fig. 4). Different
criteria for the RR interval, P-P interval, P
wave shape and QRS width are combined
together.

Normal rhythm/ Abnormal rhythm
classifier

This method shows that we can find
differences between abnormal beats and
normal beats in the matrix of wavelet
coefficients. The Mexican hat wave and
scale 1-64 were used. The maximum of
square modulus of CWT coefficients of SR
(sinus rhythm) in the area around QRS
(QRS including) is usually for a between
a=1and a=10 and it does not change too
much from one another. The square
modulus of CWT coefficients of premature
ventricular contractions has a bigger
amplitude, the maximum of coefficients in
the QRS area is in a higher scale than for
normal beats and width of its shape is
higher. It can be compared in Fig.6, where
narrow QRS complexes of normal beats
have a narrower response and a lower
amplitude in the matrix of CWT coefficients
than premature ventricular contractions.
The position of maximum of CWT
coefficients for PVC's in the area of QRS
complex on a scale axis is more than 18.
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Figure 5. Width analysis: (a) signal No. 119, (b) contour envelope, (c) filtered contour
envelope, (d) edges image.
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Figure 6. Discrimination of normal and ventricular premature contractions
(a) Square modulus of CWT coefficients — Mexican hat wave,
(b) ECG signal No. 119.

Each change in the size of maximum,
position of maximum on a scale axis and
width between beats can signalize some
abnormality or noise.

RBBB (right bundle branch block) has
maximum of coefficients in low scales,
usually the same as SR, but it can be
distinguished by virtue of QRS-width.

Results

Algorithms have been developed in the
MATLAB environment with a Wavelet
Toolbox. Signals were tested on selected
recordings from the MIT-BIH arrhythmia
database created by the Massachusetts
Institute of Technology (MIT) and Boston's
Beth Israel Hospital (BIH). All analysed
recordings contained description of each
heart beat used for evaluation of detection
accuracy. Asingle lead MLII (modified limb
lead Il) was chosen for an analysis. The
used sampling frequency was 360 Hz.

Detection of QRS-comlplexes

The algorithm was tested on 48 signals
(no. 100-234) from the MIT-DB library in full
length (each approximately of 30 minutes,
650 000 samples). In total, more than 24
hours of signals containing 99555 QRS-
complexes were analyzed. The average
detection rate was 99.45%, the lowest
result was found for the signal no. 207
(88.63%). The signal No. 207 contained
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large periods of ventricular fibrillation,
where it was difficult to recognize particular
QRS-complexes. The detector had the
detection rate above 99.9% in 23 signals,
and 99%in43 of signals.

Fig.7 documents robustness of the
algorithm. The upper panel shows an
original signal with detected heart beats (N
under the signal curve). The lower panel
shows the same signal with the original
description from the MIT-BIH database. In
this example, no QRS complex was
missed or false detected.

APC/PVC classifier
Classification of ECG was carried out on

|

34 of MIT-DB recordings. The following
beat types were selected for the study:
sinus rhythm (SR), premature ventricular
contraction (PVC), and premature atrial
contraction (APC). Classification was not
trivial due to the wide variations of the
morphology of the SR, PVC, and APC
beats as it can be shown on the recordings.
The average accuracy of this method in
classification of SR, PVC and APC beats
was 94.6%. The accuracy is represented
by a ratio of true positive detections to a
number of all beats. Numbers of tested SR,
PVC, and APC beats and accuracy of
detection is summarized in the table below.
The accuracy of detection of SR, PVC, or
APC beats in the table is represented by a
ratio of true positive detections to a number
of corresponding beats.

Table 1. Classification accuracy for APC/PVC
classifier.

| Rhythm|[Database || Algorithm|| Accuracy (%)]

SR || 69264 || eeB21 || 961 |
Pvc || 5283 || 2807 || 712 |
lApc [ g1z || 27t || 304 |

We tested 34 signals from the MIT-DB
library where PVC and APC appear more
frequently. The system described in this
paper is patient-independent: an operator
is not required to hand-segment samples
of each new type of a beat before and
during the analysis. The results obtained
have shown that continuous wavelet
transform enables an arrhythmia analysis
and helped identify characteristics for
arrhythmia classification.
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Figure 7. Detection of QRS-complexes — signal No. 105: (a) results, (b) database.
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Normal rhythm/abnormal rhythm
classifier

The algorithm was tested only on 40
signals from the MIT-DB library with PVC's,
APC, RBBB, LBBB (left bundle branch
block), SR. We can easily distinguish
PVCs between RBBB, SR, APC and other
narrow complex arrhythmias by searching
for location of local maxima in matrix of
CWT coefficients on a scale axis. This
method has average accuracy 96.81% for
detection of PVCs between APC, SR,
RBBB. Signals with LBBBs were also
tested, but there were not obtained reliable
results. This algorithmis also independent,
there is not necessary manual segmen-
tation and manual classification of data.

Discussionand conclusion

These methods are found suitable for
a continuing analysis. The cooperation
with a cardiologist is necessary for further
improvement. QRS complex detection
accuracy is comparable to the recently
published results. Classification algo-
rithms can recognize clear examples of
abnormality and typical progresses, but
beats on the border of categories and
atypical changes are not classified very
successfully. APC/PVC classifier promises
good results with some limitations:
classification based on the detection of
waves and measuring important intervals
in contour envelopes can decide about
abnormal intervals and values but it cannot
decide precisely about the type of
arrhythmias. This information cannot be
compared to the database. This decision is
not possible without practical medical
experience. Finding of hidden differences
between diseases and WT coefficients are
promising techniques. The Normal
rhythm/Abnormal rhythm classifier shows
that differences can be discovered. We can
see in the matrix of coefficients that RBBB
has usually maximum of coefficients in the
low part of the scale range (1:64), the same
as SR (but we can separate them due to
their width), LBBB in the middle part and
PVC in the higher part. We can determine
with high accuracy the PVCs in the matrix
of coefficients. They have a maximum in
the higher part of the scale range and a
broad response in the waveletimage. Only
this criterion gives good results for
recognizing and distinguishing PVCs
between SR, RBBB, APC, NPB (nodal
premature beat), JEB (junctional escape
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beat) and other narrow complex
arrhythmias. It can be used as feature for
the automatic computing and training
methods. The CWT transform offers
a detailed analysis, although this comes at
a significant expense in computational
load and memory usage. The creation of
a general algorithm successful on all ECG
cycle variants is a difficult problem.
Automatic computing and training
methods based on artificial intelligence
approaches, hidden Markov models or
others could solve the described
difficulties. We can detect successfully
deviations from the sinus rhythm; broad,
wide and deep PVCs, etc., but there are
still variations, where human input is
necessary.
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