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Abstract

Objectives: The DNA analysis is now accepted by the
broad public as a completely standard and faultless proce-
dure but in some circumstances its reliability can decrease
substantially. This paper deals with the process of identi-
fying and determining the weight of evidence against the
suspect. Main stochastic approaches to identification are
shown.
Methods: The weight-of-evidence formula was derived
from Bayes theorem and its application in the model of
the island problem was demonstrated. The beta-binomial
formula derived from Dirichlet distribution was used for
calculation of more complex situations.
Results: From many various complications in the model
of the island problem there was shown how to work with
uncertainty in a population size. The beta-binomial for-
mula was used to include a subpopulation structure and in
issues of DNA mixtures.
Conclusions: In particular, the influence of a population
structure is now explored insufficiently. Using the results
of H. Kubátová in this area, a new formula was derived.
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1 Introduction

DNA profiling, discovered by Alec Jeffreys during the
1980s, has caused a revolution in criminology. DNA helps
to convict the perpetrators of those crimes that once ap-
peared irresolvable and also helps to prove the innocence
of those who have already been convicted. The DNA ana-
lysis is now accepted by the broad public as a completely
standard procedure, which reliably convicts the offender.
Here, however, hides one of the main problems that results
from using DNA, for even DNA evidence is not foolproof.

Several possibilities keep DNA from being completely
reliable: for example there may be a false location of the
trace (more specifically, the offender may have discarded a
cigarette butt which had previously been smoked by some-
one else); the wrong take of a biological samples or damage

to the samples could have occurred; or there may have
been secondary transfer of a biological material. How-
ever, mathematicians do not deal with any of these things.
Rather, they are faced with the following task: if all of the
above options are excluded, what is the probability that
a particular offender and a detained person are the same,
given that the perpetrator’s and the suspect’s DNA pro-
files are available? As we will see, the answer depends
mainly on the number of loci we use to DNA profiling,
and the variability within each of them.

In forensic practice, genetic profiles consisting of the
short tandem repeat polymorphisms (STRs) are currently
used. STRs are known to vary widely between individuals
by virtue of variation in their length and they are found
only in the non-coding region of DNA, so they provide no
information of medical or personal significance. Therefore,
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STRs are very useful and convenient for identification pur-
poses.

The numerical representation of DNA profile consists
of two numbers of alleles at each locus examined, one al-
lele inherited from the mother and the other one from the
father, along with two letters (XX or XY) which show the
result of the gender test. The number of examined loci
varies from country to country, with the smallest being
seven used in Germany and a maximum of sixteen used
in the Czech Republic.

For example, the system of DNA profiling used in the
UK is known as SGM Plus. It examines ten loci plus a
gender test and produces a numeric DNA profile which
may look like this:

15,18; 6,9; 11,13; 22,22; 31,32.2; 14,17;
17,20; 11,12; 13,16.3; 15,16; XY.

The number provides information about a feature of DNA
at each locus we examine. The number of complete repeat
units observed is designated by an integer. Variant alleles
that contain a partial repeat are designated by a decimal
followed by the number of bases in the partial repeat. For
example, an 32.2 allele contains 32 complete repeat units
and a partial repeat unit of 2 bases ([10]).

Although each person’s DNA is unique (apart from
identical siblings), there is a very small, but finite chance
(less than 1 in a billion in SGM Plus) that two unrelated
people could share the same DNA profile. For this rea-
son it is not possible to convict a person on DNA evidence
alone and there must be additional corroborating evidence
available.

DNA left at a crime scene may also decompose over
time because of bacteria, UV light, environmental condi-
tions etc. Due to the quality of biological material and/or
its amount it is not always possible to investigate all of
the polymorphisms. An incomplete DNA profile may look
like

15, ; 6,9; 11,13; , ; 31,32.2; 14,17;
,20; ,12; 13,16.3; 15,16; XY.

If an incomplete DNA profile is obtained, the probability
of unique identification drops accordingly. However, even
very incomplete profiles can still be used to conclusively
eliminate a person from an investigation.

In the following text we will assume the examination
of one locus only. Assuming independence of loci, genera-
lization to a larger number of loci can be performed using
a product rule (i.e. multiplying the individual marginal
probabilities).

2 Methods

Denotation

• E - evidence or information about the crime (i.e.
the circumstances, witness testimonies, crime scene
evidence, etc.),

• G - an event at which the suspect is guilty,

• I - an event at which the suspect is innocent,

• Ci - an event at which the culprit is a person i,

• I - the population of alternative suspects.

Our goal is to determine the conditional probability of
P(G|E) that, given circumstances E, the suspect is truly
the culprit of the investigated crime. According to Bayes
theorem

P(G|E) =
P(E|G)P(G)

P(E|G)P(G) + P(E|I)P(I)
. (1)

However, the expression P(E|I) cannot be counted di-
rectly. The suspect is innocent if and only if there exists
an index i ∈ I in which the event Ci occurs. Then the
event I is equivalent to the event ∪i∈I Ci and thanks to
the disjunction of events Ci holds:

P(I) = P (∪i∈ICi) =
∑
i∈I

P(Ci).

Thus

P(E|I)P(I) = P (E| ∪i∈I Ci)P (∪i∈I Ci) =

=
P (E ∩ (∪i∈I Ci))

P (∪i∈I Ci)
P (∪i∈I Ci) =

= P (∪i∈I (E ∩ Ci)) =
∑
i∈I

P (E ∩ Ci) =

=
∑
i∈I

P(E|Ci)P(Ci).

Let define likelihood ratio

Ri =
P(E|Ci)
P(E|G)

(2)

which expresses how many times the probability of evi-
dence E is greater under the condition that the culprit is
a person i than under the condition that the culprit is the
suspect.
Further we define likelihood weights

wi =
P(Ci)

P(G)

which expresses how many times the prior probability of
committing a crime by a person i is greater than the prior
probability of committing a crime by the suspect.

Then

P(G|E) =
1

1 +
∑
i∈I wiRi

. (3)

The formula (3) is usually called the weight-of-
evidence formula.
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3 The Island Problem

The simplest application of the previous part is the
"island problem". This is a model where a crime is com-
mitted on an inaccessible island which contains N people
who are unrelated to each other. At the beginning, there
is no information about the offender, so we assign to each
of the islanders the same (prior) probability of committing
a crime. Then the offender is found to possess a certain
characteristic Υ (it can be an allele, or a pair of alleles
respectively, in the appropriate locus) and the suspect is
also found to have that characteristic, Υ. The question
becomes, to what extent can we be sure that we have
found the suspect who is truly the culprit.

First we calculate the likelihood ratio using the for-
mula (2). Let p be the frequency of the Υ in the popu-
lation. We suppose that the evidence consists only of the
information that the suspect’s and the culprit’s DNA pro-
files are the same. If the hypothesis G holds, both profiles
come from the same individual and thus the denominator
equals 1. The numerator of Ri, P(E|Ci), can be estimated
by p. Because wi = 1 ∀i ∈ I, using the formula (3) we get

P(G|E) =
1

1 +N · p
. (4)

For example if p = 0.01 and N = 100 then P(G|E) = 1/2.
The previous result can be modified for more complex

(and realistic) situations. Let’s see which situations is this
simple model inadequate for:

• Typing and handling errors
As the test may give erroneous results in a small
percentage of cases, errors caused by a human fac-
tor must also be considered: contamination or re-
placement of a sample from which the Υ-status is
investigated; incorrect evaluation of the results, or
even intentional misrepresentation.

• The population size
Often the population size N is only estimated and
furthermore, if there is migration in the population,
then it is necessary to account for greater uncer-
tainty within the population size.

• The probability of occurrence Υ in the population
The value of p is usually unknown and is therefore
estimated on the basis of relative frequency of the
Υ in a smaller sample or in a similar population,
about which we have more information. However,
this auxiliary data may be outdated or may only
partially describe the ivestigated population.

• Suspect searching
The suspect is not usually chosen randomly from the
population but on the basis of other circumstantial
evidence which increase the probability of guilt. An-
other possibility is to choose the suspect by testing
individuals from the population for the presence of
Υ. In this way, people who are not Υ-bearers can be

excluded and thus the population size of alternative
suspects is reduced.

• Relatives and population subdivision
If the suspect (or other individual being tested) is
a Υ-bearer and some of his relatives are included in
the population too, then in the case of DNA profile
increases the probability of other individuals hav-
ing Υ due to inheritance. Similarly, unusually high
relative frequency of a rare character usually occurs
within the same subpopulation due to its shared evo-
lution history.

• The same prior probability of committing a crime
Although this requirement intuitively corresponds
with the general presumption of innocence, we can
asses varying prior probability (i.e. based on the dis-
tance from the scene, time availability, or a possible
alibi).

We will analyze some of these cases in detail in the
following sections.

4 Uncertainty about the
Population Size

The uncertainty about the size of the population of
possible alternative suspects affects the prior probability
of P(G). Consider the population size Ñ is a random vari-
able with mean N . The prior probability of guilt, given
value Ñ , is

P(G|Ñ) = 1/(Ñ + 1)

but since Ñ is not known, we use the expectation:

P(G) = E
[
G|Ñ

]
= E

[
1

Ñ + 1

]
.

The function 1/(Ñ + 1) is not symmetric but it is at
least convex on the interval (0,∞). Jensen’s inequality for
convex functions (E[f(x)] ≥ f(E[x])) implies

P(G) = E

[
1

Ñ + 1

]
≥ 1

N + 1

because E[Ñ ] = N .
Thus the failure to uncertainty about the value of N

tends to favor defendant. Moreover, this effect is usually
very small, let it show in a concrete example.

For ε ∈ (0, 0.5) we put

Ñ =

 N − 1 with probability ε
N with probability 1− 2ε
N + 1 with probability ε.

Then

P(G) = E

[
1

Ñ + 1

]
=

ε

N
+

1− 2ε

N + 1
+

ε

N + 2
=
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=
1

N + 1
+

2ε

N(N + 1)(N + 2)
≥ 1

N + 1

and if we put ε = 0.25 and N = 100 then P(G) is greater
than 1/(N + 1) by only 0.000000485.

Let’s see what the population size uncertainty causes
in formula (4):

P(G|E) =
1

1 +
∑
iRi

P(Ci)
P(G)

=
1

1 + p 1
P(G)

∑
i

P(Ci)︸ ︷︷ ︸
=1−P(G)

=

=
1

1 + pN(N+1)(N+2)
N2+2N+2ε (1− N2+2N+2ε

N(N+1)(N+2) )
=

=
1

1 +Np N3+2N2−2ε
N3+2N2+2Nε

=

=
1

1 +Np
(

1− 2ε N+1
N3+2N2+2Nε

) .
Substituting again ε = 0.25 and N = 100 we receive

P(G|E) = 0.5000124 which value, despite the high value
of ε, differs from the original result of 50 %, at which we
calculate with N fixed, in an order of just one thousandth
of a percent. If we want to still count with uncertainty
about N ,

P(G|E) ≈ 1

1 +Np (1− 2ε/N2)

is very good approximation to take. In our exam-
ple this approximation gives P(G|E) = 0.5000125, i.e.
50.00125 %.

Balding in [1] uses an approximation order of magni-
tude worse than

P(G|E) ≈ 1

1 +Np (1− 4ε/N3)

which gives in our example the value P(G|E) = 0.5000003,
i.e. 50.00003 %.

5 DNA Database

DNA profiles as a sequence of alphanumeric data al-
low relatively easy storage in the database, therefore na-
tional databases are created from late 1990’s. Currently
there are three major forensic DNA databases: CODIS
(Combined DNA Indexing System), which is maintained
by the United States FBI; the ENFSI (European Network
of Forensic Science Institutes) database; and the ISSOL
(Interpol Standard Set of Loci) database maintained by
Interpol.

All systems mentioned above divide the DNA database
into two subdatabases. In the crime scene database bio-
logical samples collected at the scene are stored, in the
convicted offender database figure genetic profiles of in-
dividuals convicted in the past. These two databases are

compared with each other and eventual match of profiles
is examined by qualified professionals.

The type of offenses for which DNA is stored differs
among countries and states. Initially, these databases
contained only samples from violent offenders, those con-
victed of aggravated assault, rape, or murder. However,
the value of obtaining DNA from offenders of less severe
crimes has been recognized, as many small time criminals
become repeat offenders and also more violent offenders.
The power of a large bank of DNA samples extends to the
possibility of it acting as a deterrent. A match of DNA evi-
dence from a crime scene (which would then be logged in
the crime scene database) to one in the convicted offender
database rapidly solves the crime, saving time, effort, and
money ([3]).

The absolutely largest national database is the US Na-
tional DNA Index System (NDIS). It contains almost ten
million offender profiles and over 380 000 forensic profiles
as of July 2011 ([7]). The oldest and relatively largest
database is the national DNA database of UK (NDNAD)
which currently consists of over six and a half million pro-
files.

After the creation of DNA databases the number of
solved crimes in the UK has increased from 24 % to 43 %.
The success of this approach is also confirmed by the fact
that a new crime scene DNA profile being loaded to the
DNA database had a 45 % chance of matching a persons
DNA profile in 2002/03 against 60 % in 2008/09 ([8]).
Thus the database system has the support of public. On
the other hand, from DNA very sensitive personal infor-
mation can be obtained and therefore it is necessary to
ensure a thorough protection of databases against abus-
ing.

The Czech national database was created in 2002.
Then there was a rapid development of the database and it
currently contains approximately 90 000 genetic profiles.

6 Relatives and Population
Structure

Alleles, which are identical and come from a common
ancestor, are called ibd (identical by descent). A com-
mon recent evolution history of two individuals, whether
relatives or members of the same subpopulation, increases
the probability of occurrence of ibd alleles. Therefore, as
the degree of relatedness within subpopulations is used,
the coancestry coefficient θ indicated the probability that
two randomly selected alleles on fixed locus are ibd. Ne-
glecting the influence of kinship and population structure
leads to overestimation of posterior probability of the sus-
pect’s guilt. Ignoring this tends to suspect’s disfavour, so
this topic is given considerable attention.

Balding and Nichols in [2] proposed a method which al-
lows to calculate probability of observing considered geno-
type in structure population via coancestry coefficient.
More detailed mathematical derivation of method includ-
ing several corrections was provided by Kubátová in [6].
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Let’s denote pA and pB frequencies of alleles A a B in
the whole population, k proportion of the subpopulation
in the general population and θ coancestry coefficient in
the subpopulation. The probability of observing homozy-
gous genotype can be calculated as

P(AA) = pA

(
θ + (1− θ) pA − θk

1− θk

)
(5)

and similarly heterozygous genotype:

P(AB) = 2pApB
1− θ
1− θk

. (6)

Balding and Nichols do not use variable k in their
derivation, we get their results by putting k = 1. Thus,
probabilities of homozygous genotypes decreased and con-
versely, probabilities of heterozygous genotypes increased.

7 Beta-binomial Formula

To get formulas (5) and (6), we can use also a more
general approach proposed by Wright ([11]). Consider on
given locus J alleles A1, . . . , AJ having probability of oc-
currence in the population p1, . . . , pJ ,

∑J
i=1 pi = 1. Allele

proportions in the subpopulation can be modelled by the
Dirichlet distribution with parametres λpi, λ = 1−θ

θ(1−k) .
Thus the probability of observing mi alleles Ai (

∑
imi =

n) is given by

P(m1, . . . ,mJ) =
Γ (λ)

Γ (λ+ n)

J∏
i=1

Γ (λpi +mi)

Γ (λpi)
. (7)

Putting m = (m1, . . . ,mJ) we can adjust formula (7) to

P(m) =

J∏
j=1

mj−1∏
i=0

[(1− θ) pj + θi (1− k)]

n−1∏
i=0

[1− θ + θi (1− k)]

. (8)

The formula (8) is usually called beta-binomial sam-
pling formula and applies to ordered samples. If we
want to work with unordered samples, it is necessary to
multiply the result by n!

m1!···mJ !
.

From the formula (8) we can also deduce the proba-
bility of observing certain combination of alleles. For
J = 2, mA = 2 and mB = 0 we have

P(AA) =
(1− θ) pA [(1− θ) pA + θ (1− k)]

(1− θ) [1− θ + θ (1− k)]
=

= pA

[
(1− θ) pA + θ − θk

1− θk
+ θ − θ − θ2k

1− θk

]
=

= pA

[
θ +

(1− θ) pA + θ − θk − θ + θ2k

1− θk

]
=

= pA

[
θ +

(1− θ) pA − θk (1− θ)
1− θk

]
=

= pA

[
θ + (1− θ) pA − θk

1− θk

]
,

which is in agreement with (5).
Similarly putting J = 2, mA = 1 and mB = 1 in the

formula (8) we get

P(AB) = 2
(1− θ) pA (1− θ) pB

(1− θ) (1− θ + θ (1− k))
= 2pApB

1− θ
1− θk

,

which agrees with formula (6).

8 Aplication of Beta-binomial
Formula

Using the formula (8) we can also deduce the proba-
bility of observing certain allele given by our knowledge
of previous alleles observing:

P(mj+1|m1, . . . ,mj , . . . ,mJ) =
(1− θ) pj +mjθ (1− k)

1− θ + nθ (1− k)
.

(9)
Denote GC and GS genotype of culprit and suspect

respectively, and generally Gi genotype of person i. Like-
lihood ratio (2) can be rewritten as

Ri =
P (GC = GS = D|Ci)
P (GC = GS = D|G)

=
P (Gi = GS = D)

P (GS = D)
=

= P (Gi = D|GS = D) .

Suppose first that the suspect has a homozygous pro-
file AjAj and with this knowledge calculate the proba-
bility that the suspect has the same homozygous profile:

Ri = P(Gi = AjAj |GS = AjAj) ≡ P(A2
j |A2

j ) =

= P(Aj |A3
j ) · P(Aj |A2

j )

We know how to calculate these conditional probabili-
ties by using (9). First we put mj = n = 2 and then
mj = n = 3, that is

Ri =
[(1− θ) pj + 2θ (1− k)] [(1− θ) pj + 3θ (1− k)]

[1− θ + 2θ (1− k)] [1− θ + 3θ (1− k)]
.

Similarly we proceed for a heterozygous profile AjAk:

Ri = P(Gi = AjAk|GS = AjAk) ≡ P(AjAk|AjAk) =

= P(Ak|A2
jA

1
k)P(Aj |A1

jA
1
k) +

+P(Aj |A1
jA

2
k)P(Ak|A1

jA
1
k).

To quantify both expressions on the bottom line we
put mj = 1, n = 2 and mk = 1, n = 3; mk = 1, n = 2 and
mj = 1, n = 3 respectively. In total

Ri = 2
[(1− θ) pj + θ (1− k)] [(1− θ) pk + θ (1− k)]

[1− θ + 2θ (1− k)] [1− θ + 3θ (1− k)]
.
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9 DNA Mixtures

If the DNA sample is found to have more than two al-
leles at one locus, it is clear to be a mixture. The number
of contributors to the mixture can be known or estimated,
usually as

⌈
n
2

⌉
where n is the maximum number of alleles

detected. Because of the large number of situations that
may have arised we show for illustration only the case
when the victim (V ) and one other individual contribute
to the mixture.

The likelihood ratio Ri defined by formula (2) can be
rewritten as

Ri =
P (EC , GS , GV |Ci)
P (EC , GS , GV |G)

=

=
P (EC |GS , GV , Ci)
P (EC |GS , GV , G)

· P (GS , GV |Ci)
P (GS , GV |G)

=

=
P (EC |GS , GV , Ci)
P (EC |GS , GV , G)

=
P (EC |GV , Ci)

P (EC |GS , GV , G)
.(10)

Four alleles mixture

First we look at the case where the mixture consists of
four alleles.

Suppose the following conditions apply:

1. None of the individuals are considered relatives to
each other.

2. The population is homogeneous (i.e. θ = 0).

3. The population follows Hardy-Weinberg equilib-
rium.

Let the mixture be made up of alleles A,B,C,D with
known probabilities of occurrence in the total population
pA, pB , pC , pD and let the suspect have alleles A,B and
the victim C,D respectively. The denominator in the for-
mula (10) is equal to one, the numerator is equal to the
probability of observing the individual with alleles A,B
which is under the above assumptions 2pApB . Therefore,
the likelihood ratio equals to

Ri = 2pApB .

Suppose now that all considered individuals have the
same degree of relatedness to each other expressed by
coancestry coefficient θ. Then according to (9)

Ri = P (AB|ABCD) =

=
2 [(1− θ) pA + θ (1− k)] [(1− θ) pB + θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]
.

Three alleles mixture

In the case of three alleles in the sample, assuming
at least two contributors to the mixture is also necessary.
Consider alleles A,B,C with probabilities pA, pB , pC . If
the victim is homozygous for allele C, we get the same
results as in the case of a mixture of four alleles.

Let’s assume that the victim is heterozygous with alle-
les A,B. Let the suspect be homozygous for allele C and
conditions 1 to 3 are fulfilled. The denominator of the
formula (10) is again equal to one, the numerator equals
to the probability of observing an individual who has the
allele C and does not have a different allele than A,B or
C. Therefore

Ri = P(AC) + P(BC) + P(CC) =

= 2pApC + 2pBpC + p2C . (11)

To include the population structure we use the formula
(9) again:

Ri = P (AC|ABCC) + P (BC|ABCC) +

+ P (CC|ABCC) =

=
2 [(1− θ) pA + θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

+
2 [(1− θ) pB + θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

+
[(1− θ) pC + 3θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

=
[(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)]
×

× [(1− θ) (2pA + 2pB + pC) + 7θ (1− k)]

[1− θ + 5θ (1− k)]
.

We assumed in the previous calculation that the sus-
pect is homozygous for allele C. If he is heterozygote
with alleles A and C, or B and C respectively, formula
(11) remains unchanged under conditions 1 to 3. If the
population structure is included, we get in both cases the
likelihood ratio

Ri =
[(1− θ) pC + θ (1− k)]

[1− θ + 4θ (1− k)]
×

× [(1− θ) (2pA + 2pB + pC) + 8θ (1− k)]

[1− θ + 5θ (1− k)]
.

10 Conclusion

We derived the weight-of-evidence formula and its sim-
plest applications. To include the uncertainty about the
population size we proposed a better approximation than
Balding in ([1]). We showed how to include the subpopu-
lation structure into the model. Here we used new results
from ([6]) which we plan to investigate in more detail in
future.
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