P. Sanda: Speeding Up the Algorithm for Finding Optimal Kernel Bandwidth in Spike Train Analysis, en 73-75

I

Speeding Up the Algorithm for Finding Optimal Kernel Bandwidth

in Spike Train Analysis

P. Sanda’

"Institute of Physiology, Academy of Sciences of the Czech Republic

Supervisor: Doc. RNDr. Petr Lansky, CSc.

Summary

One of the important tasks in the spike train
analysis is to estimate the underlying firing
rate function. The aim of this article is to
improve the time performance of an
algorithm which can be used for the
estimation.

As there is no unique way how to infer the
firing rate function, several different
methods have been proposed. A popular
method how to estimate this function is the
convolution of the spike train with
Gaussian kernel with appropriate kernel
bandwidth. The definition of what
“appropriate” means remains a matter of
discussion and a recent paper [1] proposes
a method how to exactly compute optimal
bandwidth under certain conditions. For
large sets of spike train data the
elementary version of the algorithm is
unfortunately too inefficient in terms of
computational time complexity.

We present a refined version of the
algorithm which in turn allows us to use the
original method even for large data sets.
The achieved performance improvement
is demonstrated on a particular results and
shows usability of proposed method.

Keywords: action potential, spike train,
neural coding, firing rate, convolution,
Gaussian kernel, kernel bandwidth,
Brent's minimization, parallel computing,
MPI

1. Introduction

Many neurophysiological studies are
based on the assumption that the majority
of information flow between neurons is
provided by spikes. Spike trains are
believed to form a neuronal code and many
coding models successfully predict
experimental stimuli features when only
the resulting spike train is given. It has
been shown that important aspects of the
stimuli are coded by the neuron's firing
rate, however, the exact procedure how to
obtain such a rate from the experimental

EJBI - Volume 6 (2010), Issue 1

data differs from paper to paper and
various methods were proposed [2].

Here we consider the method based on the
convolution of a spike train with a fixed
(Gaussian) kernel, which in result leads to
a smooth estimate of firing rate and has
been widely used in the past decades [3],
[4], (5], [6], [7], [8]. The most difficult part of
this method is the selection of the kernel
bandwidth, because it affects substantially
the “quality” of the estimate, while there is
no obvious clue how the optimal bandwidth
should be chosen. In[1] authors propose a
kernel density estimator based on the
mean integrated squared error principle
(MISE) and formulate a precise algorithm
how to infer optimal (fixed) kernel
bandwidth.

For larger sets of recorded spike trains the
time complexity of the straightforward
version of the algorithm increases, so that
it becomes unusable for online queries
when studying the features of the method.
Here we provide a solution, which
improves the time complexity of the
implementation. That at the end allows us
to work with experimental data in
a reasonable manner. It is also worth to
note that the proposed solution does not
interfere with the actual result of the
original method - for the properties and
comparison with other methods look in the
original paper[1].

2.Methods

2.1 Original method

The firing rate is a non-negative function A
for which the integral [A(t)dt gives the
expected number of spikes during the time
interval [a,b). In the experimental recording
we get only one or more trials of spike train
data. The problem is how to assess the
firing rate A, which will be as close as
possible to the original A, which is believed
to stand in the background of spike
discharges. The method is to convolve the

spike train with a specific kernel, thus
obtaining a smooth estimate of A, for
example see Fig. 1. In this case we use
fixed Gaussian kernel

2

1 t
kw(f) = mexp(— W)

and the problem is reduced to the question
how to select the optimal bandwidth W, so
that the difference between A and A is
minimal. The method itself is beyond the
scope of this article, for details see [1].
What is important here is that the core of
computation can be summarized in the
following statement: find w", such that the
formula (1) is minimal:

1 2
C(H)):n_zzw“(tf!t;)_FZkM(If _tj)
(1),

where ¢t is the time of i-th spike, n is the
number oftrials,

f--'ll'[ti'il'.i':' = ,Ll," '{"Il'“- =
[fi. E.a]

defines the time range of the record and k,,
is as the kernel used. Since we will study
the Gaussian kernel the equation (1) can
be rewritten as

ti) kwlt — ;) dt,

2Jan*Cw) = Hes >
"

7[{‘—1,)” 7[11—1,)”
e awt 242 2wt
Wiicj

(2),

where N is the number of spikes. Note that
the term 2Vnn’ is constant and has no
effecton w*. Let us denote the inner term of
the sumin (2) as E(w, t, t) . We will denote
1/ the set of possible values of w, in which
we are searching. We denote the size
W = |w| and assume that its points are
equidistant.

© 2010 EuroMISE s.r.o.

]

The straightforward implementation will
find the minimum value via evaluating this
termin three nested loops:

(1M for wew/
(12)for je[l,...N]
(13)for ie[1,...,j- 1]
Tmp=E(w, t,t)
if (min>tmp)min=tmp , w*=w

thus obtaining the time complexity O(N°W).
The selection of 74/ is dependent on the
interval [a, b) and required precision of the
optimal value. In a typical case w*<< b - a
we can select the upper bound of 7/ to
log(b - a), in the case of bisection (see
below) the upper bound is not so vital.

2.2 Bisecting

Now we will use thatin a typical case where
C forms an unimodal function, see Fig 2.,
though this cannot be asserted in general
(such a problem can, for example, occur
when searching for bandwidths is smaller
than the sampling resolution of input data).
Having the unimodal function and a
sensible estimate of lower and upper
bounds we can use any of the extremum
search algorithms based on sectioning the
domain. This will reduce loop (/1) time
complexity from a linear to a logarithmic
factor and as a result we obtain the
complexity of O(N7og(W)). As hinted
above while this method helps a lot certain
attention needs to be paid before its use.

2.3 Parallelization

Because the evaluation of E(w, t, t) is
independent of the previous computations,
it is a natural target for parallelization.

Fung rate

ima

Fig.1. lllustration of the problem. The thick line

is the original A, the top line shows
experimentally measured spike train generated

from this function, the thin line is firing rate A ,
which we try to optimize.

EJBI - Volume 6 (2010), Issue 1

omputatalon time |s|

Ce

Bandwidth [ms]

Fig. 2. Typical shape of the function for
experimental spike train data.

Splitting the task for the parallel execution
at the loop (/1) level will not allow us to use
parallelization in case of the bisection run,
thus we will split the task on p parts at the
level (12). That will give us the final estimate
for the time complexity of O(N’log(W)/p).

Let us stick with the implementation details
now.

2.3.1 Splitting

Since the upper bound in the loop (/3) is not
constant, trivial splitting of (/2) will produce
p subtasks [1,...,N/p),[N/p,...,2N/p),...,
[(p-1)N/p,...,N] with increasing time
complexity of subtasks. At the end this
would produce a situation where the first
subtasks are completed having the
relevant CPUs idling while the last
subtasks would still be in computation.

There are more ways how to solve it - (1)
move the splitting of task into (13), (2)
splitting p tasks in (/2) in a proportional
way, so that each subtask has the same

" . N - . - J
100 150 200 250 200 350 400

Size of (12) kagment 1

omputatalon time |s|

[

P. Sanda: Speeding Up the Algorithm for Finding Optimal Kernel Bandwidth in Spike Train Analysis, en 73-75

computational cost or (3) split (/2) into
many small subtasks which are
successively distributed to CPUs
according to their load. In real-life
implementation we have chosen (3)
because (1) tends to produce high
overhead of the parallelization engine and
(2) assumes that the underlying CPUs are
equivalent in performance and accessi-
bility (that breaks in many distributed
environments).

3. Results

3.1 Tuning parameters

The algorithm was implemented based on
the sections above, allowing all the
strategies - exhaustive search or bisecting
both in sequential and parallelized
versions. The language used was C++, for
parallelization openMPI implementation
[9] of MPI standard was chosen, for
bisection we used Brent minimization
algorithm [10]. In order to find the proper
splitting of the subtasks we analyzed
measured time demands for a different
fragmentation of the tasks, see Fig. 3.

We ran the optimality search for two sets of
1000 and 18000 spikes. In the case of the
larger set we could see that taking any
value below f = 500 gives approximately
the same time demands. On the very
beginning there is a visible peak caused by
the growth of the load by the parallelization
maintenance (i.e. the cost of distributing
subtasks starts to be larger than
computation of subtasks themselves).
Fromf =500 we could see gradual growth
caused by the insufficient fragmentation
(i.e. some CPUs are needlessly idle and
waiting for other unfinished subtasks).

26

24 |

"
~

b

0 100 200 300 400 500 &00 700 BOO SO0

Size of (12) ragmant |

Fig. 3. Figure shows how splitting affects time performance of the computation. The left panel

presents the case, where the input data were 1000 spikes, while the input for the right panel

was 18000 spikes. Both sets were taken from the real experimental data, bisection was used
in this case. fis the size of one (fixed) subtask, that is the number of (I3) iterations.

© 2010 EuroMISE s.r.o.

P. Sanda: Speeding Up the Algorithm for Finding Optimal Kernel Bandwidth in Spike Train Analysis, en 73-75

Tab. 1. Comparison of time demands.

Method Time (min:sec)
Sequential search 58:41
Parallel search 4:14
Sequential bisection 2:43
Parallel bisection 0:09

As the number of spikes in the input set will
decrease, this value will also decrease, as
the results for the set of 1000 spikes show.
Here we could see similar properties as far
as the shape is concerned, but the total
time needed for computation is now
negligible.

This leads to the final choice of f = 100,
which will be always sufficient for any
larger input sets. As it can be seen in the
left panel of Fig. 3, it is a reasonable value
even for small sets, but that is not so
important due to small total time demands.
This value is, of course, dependent on the
particular computational setting - in our
case all tests have been done on a small
clusterwith 20 CPU cores.

3.2 Real time demands

For the comparison of real-time improve-
ments we offer the table below. The input
data and parameters were the same for all
the tasks: 18000 spikes, [1;400] ms range
for bandwidth, precision of 1 ms
(W=400/1).

EJBI - Volume 6 (2010), Issue 1

4. Discussion

We have proposed and implemented a
parallel algorithm for optimal kernel
bandwidth search which has better time
performance than its “straightforward”
version. Moreover when the function (1) is
unimodal on the given range, we can use
the bisecting version, which reduces the
time even more drastically. To check the
reasonable ranges, one can do the first trial
run which uses only few sampling points
(and in fact cannot be omitted even in
normal case).

This performance boost does not play an
important role in the case of small input
sets of spikes, however, it is significant in
case of large sets. The whole work was
motivated by real demands, when
experimental sets of ~20000 spikes were
evaluated and, moreover, their subsets
also needed to be evaluated the
approximate knowledge of the function (1)
shape reduced the need for a slow version
of the algorithm.

At the end we proposed tuning parameters
for an example cluster configuration and
provided actual results of the performance
improvement.

Acknowledgments
The work was supported by the grant SVV-
2010-265513.

References

[1] Shimazaki H., Shinomoto S:. Kernel
bandwidth optimization in spike rate
estimation. Journal of Computational
Neuroscience 2010; 29: 171182.

[2] Cunningham J.P., Gilja V., Ryu S.I,
Shenoy, K.V.: Methods for estimating neural
firing rates, and their application to brain-
machine interfaces. Neural Networks 2009;
22 (9): 12351246.

|

[3] Sanderson A.C.: Adaptive Filtering of
Neuronal Spike Train Data. IEEE
Transactions on Biomedical Engineering
1980; 27 (5): 271 274.

[4] Richmond B.J., Optican L.M., Podell M.,
Spitzer H.: Temporal encoding of two-
dimensional patterns by single units in
primate inferior temporal cortex. I.
Response characteristics. J Neurophysiol
1987; 57 (1): 132146.

[5] Richmond B.J., Optican L.M., Spitzer H.:.
Temporal encoding of twodimensional
patterns by single units in primate primary
visual cortex. I. Stimulus-response
relations. J Neurophysiol 1990; 64 (2):
351369.

[6] Paulin M.G.: Digital filters for firing rate
estimation. Biological cybernetics 1992; 66
(6): 525531.

[7] Paulin M.G., Hoffman L.F.: Optimal firing
rate estimation. Neural Networks 2001; 14
(6-7): 877 881.

[8] Nawrot M., Aertsen A., Rotter S.: Single-trial
estimation of neuronal firing rates: From
single-neuron spike trains to population
activity. Journal of Neuroscience Methods
1999; 94 (1): 81 92.

[9] Gabriel E., Fagg G.E., Bosilca G., Angskun
T., Dongarra J.J., Squyres J.M. et al:. Open
MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In:
Proceedings, 11th European PVM/MPI
Users' Group Meeting 2004; 97104,

[10] Brent R.P.: Algorithms for minimization
without derivatives. Dover Pubns; 2002.

Contact

Mgr. Pavel Sanda

Institute of Physiology,

Academy of Sciences of the Czech
Republic

Videriska 1083

142 20 Prague 4

Czech Republic

e-mail: ps@ucw.cz

© 2010 EuroMISE s.r.o.

