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Summary

Reliability of measurement is a measure of
its reproducibility under replicate
conditions. The classical concept of
reliability assumes that measurement Y'is
composed out of true value T and error
term ¢, two independent random variables,
Y =T + ¢ . Reliability of measurement is
defined as the ratio of the variance of the
true scores to the variance of the observed
scores. However, this concept is not
applicable in models for dichotomous
measurements which do not consider error
terms and are instead defined via
conditional probabilities. In this paper we
examine a more general definition of
reliability proposed in [1], which is based
on decomposition of variance in mixed
effects model. Proposed definition covers
the classical definition of reliability and it s,
moreover, appropriate for dichotomous
measurements, too. Newly, for the
proposed definition assumptions are
derived, under which the reliability of
composite measurement can be predicted
by reliability of single measurement
(Spearman-Brown formula) and
approximate validity of Spearman-Brown
formula is shown for the Rasch model.
Finally, as a modification of the classical
estimate of reliability based on Cronbach’s
alpha, we examine its counterpart logistic
alpha introduced in [2], which appears to
be more appropriate for composite
dichotomous measurements in some
cases. Simulations show that the new
estimate does not tend to underestimate
reliability as often as the Cronbach’s alpha
does. The new estimate is used in binary
data of computerized process of
myocardial perfusion diagnosis from
cardiac single proton emission computed
tomography (SPECT).
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regression, Cronbach alpha, Rasch
model, myocardial perfusion diagnosis
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1. Introduction and statistical
background

Reliability of measurement is a measure of
its reproducibility under replicate
conditions. In medical practice, the
reliability of measurement remains an
important topic engendering much
discussion. For continuous measure-
ments, reliability analysis and equivalence
test for agreement were lately studied by
Yi, Wang and He [3]. A nonparametric,
probabilistic estimate of reliability used on
cognitive tests in Alzheimer's disease was
examined by van Belle and Arnold [4]. IRT
model-based reliability estimates, which
are appropriate for dichotomous or ordinal
outcomes, were used in Teresi et. al [9)].

Reproducibility studies for binary
outcomes are typically analysed using
kappa statistics, which was motivated by
its relation to the intraclass correlation
coefficient [6], [7]. In this paper we take
quite a different approach — we discuss the
decomposition of variance in mixed effects
model settings, as appeared in [8] and
propose a new definition of reliability, which
covers the classical testing situation and is
moreover suitable also for binary data. We
also discuss a new estimate of reliability.
For better understanding of parallel with
classical test theory, a summary of the
basic principles of the classical test theory
(CTT)is givenin this section.

1.1 Reliability of measurement

within CTT

In the classical test theory [9], itis assumed
that the measurement Y is composed out
of the true value T and the error term ¢,
independent continuous random variables

Y =T +e¢,
T ~ (p,04), 07 > 0,

e~ (0,0%), % > 0.

(1)

The reliability of measurement is defined
as a ratio of variance of the true score and
variance of the observed score

var (1) o

reli(Y) = var (V) =

gl UL
or+o

(2)

Alternatively, reliability can be defined as a
squared correlation between the
measured value and the measurement
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Also, reliability can be expressed as a
correlation between repeated measure-
ments Y, Y, that is between two
independent and equally accurate
measurements of the same true value T

corr (Y, T) = corr (T +¢,T) = 0

Yi=T+¢,j=12,
€1. €3 ~ (0. ¢%) independent

cort (V7,Ye) = corr (T4 61, T+ e2) =

= % = reli(Y) (4)

T

Correlation between two independent (not
necessary equally accurate) measure-
ments of the same true value can be
expressed as

Vlide, g =100
€1~ (0,07), €2 ~ (0,73) independent

corr (Y1, Y2) =corr (1" + 61,17 + ) =

it = /7eli(¥;)\/reli(Y2)

RN
®)

1.2 Reliability of sum of repeated
measurements
Having J repeated measurements of T

Y, =T+e¢;, e~ (0,0%iid, j=1,.....J,
(6)
variability of their sum Y, =3 v; is
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I

var (Y,) = var (Z(I + q)) = J%0F + Jo?,
(7)

hence reliability p,of sum Y, orof average
Yo - %K
can be expressed by means of reliability of

single measurement p, (Spearman-Brown
formula, see[10], [11]).

s var(JT) JioZ B
Bl = var (Ye) Jrog + Jo? -

_ Ip1 _

T =-Dpm+1 P (8)

Reliability of sum of J repeated measure-
ments can also be expressed in a more
practical way

wli(Ys) = var(JT)  J J—1 J%%
T var(Y,) T J—1 J var(Y,)
_d JZO'%- + Jo? — Jo? — .]a%

T J-1 var (Y,)

J var (Z YJ) 2, var (Y;)

J-1 var (ZJ YJ)

_ J Z:}_:j,z'k"zk:
J=1 XY,k
)

where g, = cov(Y,Y,). In equation (9), we
got so called Cronbach's alpha (see [12])
which may be estimated by using sample
covariances instead of their population
counterparts

J ZZ);&.’; Sik
]*1 szh ‘iﬂ‘ ’

a =

kde sji, =

I
) N e N
t=1

(10)

For dichotomous data, estimate (10)
coincides with Kuder-Richardson formula
20 (see[13]).

As shown above in (9), Cronbach's alphais
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equivalent to reliability of sum of repeated
measurements of the same true value T.
Nevertheless, it is also widely used as an
estimator of reliability of composite
measurements.

1.3 Reliability of composite
measurements

Often, the measurement cannot be
repeated independently to produce exactly
the same true value T. In psychometrics,
the tests are composed of J items where
each of concentrates on a slightly different
aspect of measured quantity T, each
subject is described by the sum of J item
scores Yo =2V,

In medical practice, the health profe-
ssionals are often faced with the same
quantitative measurements reported by
different raters, or from the same rater
measured using different tools, and the
measured property is often described by
the average of the measurements

Vo= Y;/J
For j-th measurement, we suppose that
Vi —Ty+e, ¢~ (009),
N IR (1)

where (€,,...,.£,) are mutually independent
and also independent of (T,,...,T)
Reliability of composite measurement

Y, = Zj Y;
is
i _ var (T-)
reli(Ys) var (T,) + var (€,)

(12)

As demonstrated by Novick and Lewis in
[14], Cronbach's alpha is generally a lower
bound of reliability of composite
measurement

a <reli(Y,) = ps. (13)

Novick and Lewis showed that equality
holds only for essentially T-equivalent
items, that is in case, where for a random
variable Tand real numbers 3, such that

b Bi =0,
with probability = 1 holds

I

This is equivalent to simultaneously
holding

var (Tj) = 0%, Vj (15)
corr (T3, Tx) =1, Vj, k. (16)

Condition (1.3) is needed to have equal
item reliabilities in model (11). For
Spearman-Brown formula to hold, also
condition (16) is needed.

When items of composite measurement
are not essentially T-equivalent, besides
the fact, that Spearman-Brown formula
does not hold, from (13) we might also
expect that estimate of reliability based on
Cronbach's alpha will underestimate the
true reliability. Some estimations of this
discrepancy between reliability of
composite measurement and Cronbach's
alpha on population level can be found in
[15].

1.4 Cronbach's alpha as estimator of
reliability of composite measurements

Let us now suppose measurements Y,
j = 1,..,J on subjects i = 1,...,/
Assumptlons of essential T-equivalence

lead to 2-way mixed effects ANOVAmodel.

Yij — 15+ B35 + €,

> B =0,
b

where B, is the item parameter (item
difficulty, expert's level, etc.). When we add
assumptions of normality

T; ~ N(u,03), ej ~N(0,07),

and consider sum of squares
decomposition

SSr =Y (Vij — Yeu)? = SS4 + SS5 + SSp,

the mean squares MS, and MS; have the
following expectations
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E‘u[‘h—EZZ =Y =

i=1 j=1

! oS
EMSp=EY M (¥, V. F,i1V.57/

a=1 j=1

A= D= 1) = o (19)

Hence, Cronbach's alpha (9) can be
expressed as

EMS, —EMSg (20)

o= EMS,

and the estimate (10) can be rewritten as

- MS.-MSg | MSg . 1
T TMs, T T MSs, T Fy
(21)

where F, is the statistic used for submodel
testing with no subject effect in the full
model (17). The same statistic is used also
for testing the submodel in 2-way ANOVA
fixed effects model [16].

From (21) we can conclude that high
values of & indicate that the composite
measurement can distinguish between the
subjects well. Hence, we may expect
higher values of & when the subjects'
variability is high.

2. New developments for
dichotomous measurements

When measurements Y takes only the
values 0 or 1, the classical model
described in part 1.1 is not appropriate
anymore, since Y cannot be expressed as
a sum of two independent random
variables. Instead, the model should be
defined through conditional mean values
E(Y|T) Let us suppose a more general
model

Yij ~ f(-T3), T, ~ iid,

(Yi;|T3), (Yip |T,
(22)
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One of such models is the Rasch model
(see[17]):

. p exp(T; + ;)
B (Vi T = «(T., 5;) = m

T, ~ N(p, 07, 23)

In the framework of Item Response Theory
(IRT) the Rasch model (23) and its
generalizations are widely studied [18],
especially in connection with parameter
estimation. The concept of reliability is
extended from a single index to a function
of the true value T called the fest
information function [19]. Besides, itis also
possible to obtain an index for a test as a
whole which is directly analogous to
Cronbach's alpha: As an analogy to
decomposing an observed score into true
score and an error in classical test theory,
we consider a decomposition of an IRT
person estimate into a true location and
error

T=T+e (24)
The reliability in IRT is defined as

var (1) var (T) —Avar(s)_
var (T)

(25)

For its estimation, first, the estimates of
subjects' true locations and their standard
errors (SE) are computed by standard
estimation procedures. Then, the sample
variance of these estimates is computed to
estimate var(T ) The mean squared
subject standard error estimate provides
an estimate of the variance of the error
var(€). The resulting estimate is typically
very close to Cronbach's alpha [20].

In this paper, we consider a different
definition of reliability for model (22), one
that is a more straightforward genera-
lization of classical reliability. We give
formula for reliability in the Rasch model
and assumptions for Spearman-Brown
formula to hold in model (22). We also
intfroduce a new estimate of reliability
appropriate for composite dichotomous
measurements and we compare it to the
Cronbach's alpha in simulations and in
practical example.

2.1 Proposed definition of reliability
The total observed variance var(Y;) can be
decomposed by the means of conditional
variance and conditional mean value as

var (Yyy) = E (var (Y |T3)) + var (E (Y, |T3)).

(26)

where the first term is the intraclass
variance, that is the part of the variance,
which is not due to the variability of T and
the second term is the interclass variance,
the part of total variance which is due to the
variability of T; [8].

To follow the definition of reliability from the
classical test theory, we might defineitas a
ratio of the variance due to variability of the
measured property T to the total observed
variability, thatis

_ var (E (Y1)
var (E(Y|T)) + E (var (Y|T))"

(27)
Since for the classical model holds
EY|T)=E(T+ E)|T) =

definition (27) coincides with the classical
definition (2).

For composite measurements, the
reliability of j-th item can be defined as

and the reliability of composite
measurement Y, can be defined as

arEVaL) ()

reli(Yie) = var (Yie)

For the Rasch model (23), we derived in [1]
that reliability of composite measurement
is

J o
o wEE) | S D
EUSk= e L g T
; 2((‘,, D;Dy) 4 EB,
(30)
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where

oT+8i oT+5r

Cijp = Er

These integrals cannot be evaluated
explicitly, nevertheless they can be
evaluated numerically. Hence, for a given
testing situation (that is for distribution of
subjects' true values T number of items J
and their levels B, j=1,...,J,) the true value
of reliability can be computed (see Table 1).

2.2 Spearman-Brown formula
Preliminary let's find assumptions for
having equal item reliabilities T, forall j. As
we have already mentioned, reliability can
also be expressed as a correlation of two
independent measurements of the same
property T (see formula (4)), that is by the
(i-th subject) intraclass correlation

pijjr = cort (Yi;Yi50).

Within model (22), the relationship
between P, and T, 7, for j # " is following
(for proof, see [21]):

Pijjr = \/Tij\/Tij cort [E (Yi;[13),
E (Vi |T)] < 7T
(31)
The equalityin (31) holds for all j #j " if for all
%)
corr [E (Y |T3). E (Yip | )] = 1,
(32)

that is, in the case when for all i, j with
probability equal to one, for some
constants k, > 0 and n, and some
functions A(T) the conditional means can
be expressed as

E(Y;|T:) = kij N(T) +mi5] . (33)
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Moreover, assumption (33) can be
required with additional constraint

Sl
since A, and n, can be multiplied by
appropriate constants.

Formula (31) and assumption (33) may be
extended to the following theorem (for
proof, see [21]), which revises the theorem
of Commenges and Jacgmin (see [8]):

Theorem Suppose that Y, for i =1,...,/,
Jj=1..4J,J =2 3 obey the model (22).
Moreover, with probability equal to one let
for all i, j hold the assumption (33). Then
the following propositions are equivalent:
P1 p, =p, doesnotdependon j,j* forany
J#

P2 1,= 1,does notdependon j forany, .
P3 The model belongs to a class specified
(with probability equal to one) by:

var (Yy;|T3) = k2 [02(Th) + vi;(T1)]

(34)

where E [;;(T:)] = 0, and vy(T2) > —o?(T)).

P4 pi = Ti.

Hence, when assumptions (33) and (34)
hold, the item reliabilities equal T, for all j.
Let us now look at reliability of composite
measurements under these two
assumptions and under mentioned
constraint

J c
SR =

The reliability of (every) single item may be
written as

var B (Yi;[13)]

BT = BV, IT)] + Bvar (Y, 1T,)]

_ var [A: (T3)] _ _
var [N (13)] + Ela7 (13)]

=P

and by Theorem it coincides with the
correlation of two independent
measurements of the same property Y;, Y,
i # . The reliability of the composite
measurementis

|

_ var [B (Y;17)]
" var [E(Y;|Ty)] + E [var (V3| T3)]

var [0 BV, [1)]

var [$2, E(Yy[T)] + X2, Elvar (%5 |T)]

var {1 k(T + i)}

var {0, kalM(To) + migl } + Sy K3E[02(T:) + iy (T)]

<7 = i
(L;:1 i.:gj) var (A (T3))
=ik

= : i
(Z ”) var [A;(15)] + mB o7 (17)]

The expression (35) coincides with
Spearman-Brown formula if k; = 1 for all J.
We may conclude that the assumptions
(15)(16) of essential T-equivalence for
classical model correspond in model (22)
with assumption that with probability equal
to one, the conditional mean and variance
of Y, may be writtenas

E (Y3|T3) = Ai(T3) + 44, (36)
var (Y |T3) = of (1) + (L), (37)

where n, are given constants,
E [yi;(T)] = 0,

and V(1) > —a(T5).

As showed in [21], the Rasch model (23)
does not follow assumption (36) nor (37).
Nevertheless, Table 1 and Table 2 give us
an impression that the Spearman-Brown
formula (8) does hold at least
approximately.

In Table 1, the values of reliability were
calculated from formula (30) for different
testing situations (number of items J item
levels equidistant on <-0.1, 0.1> subject
levels T; ~ N(0,0%)).

To evaluate the integrals, function
integrate in software R (see [22]) was
used.

© 2010 EuroMISE s.r.o.
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The maximum absolute error reached in
integrations was less than 0.000025. In
Table 2, we setJ=11 and used the second
line of Table 1 together with the Spearman-
Brown formula (8) to get approximate
values of reliabilities for J =3, 20,50 and
100.

As we may see, the numerical values in
Tables 1 and 2 are very similar. As an
explanation we give an approximation of
Spearman-Brown formula for the Rasch
model. Letus assume b;small,

Zj bj =0,

and apply the first-order Taylor series
approximation (to function of one or two
variables)

oT+b; 2T
B; = E (1 + eT+05)2 ~E (1+eT)2 +
eT(1—eT) eT(1—eT)
b= b E ————,
T OE (L+eT)3 B +bE (1+eT)3”
T+b; T
el Thi e
b; = E1+CT+”J’ %ElJrcT i
el el
bE— e =D+ b0E————,
toE T T =Pt gy
T oT-Hb:
Cy = E T4 T+ 1 £ T [~
2T el
=~ m+(bj+bz,)hm -

2T

=C+ (bj +b)E ———.
+(3+ t) (1+6T)3

Then, the reliability of the composite
measurement in the Rasch model is
approximately

J2(C — D?)

Ri~ me—oyrim
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Tab. 1. Reliability in the Rasch model for different number of items.

Number Variability of subjects o2
of items 0.01 0.1 0.2 0.5 0.9 2.5 10
J=3 0.00008 0.00741 0.02881 0.15047 0.34335 0.73121 0.94152
J=11 0.00028 0.02667 0.09814 0.39386 0.65731 0.90890 0.98335
J=20 0.00050 0.04747 0.16519 0.54160 0.77717 0.94775 0.99077
J=50 0.00125 0.11078 0.33098 0.74709 0.89711 0.97843  0.99629
J=100 0.00249  0.19947 0.49735 0.85524 0.94577 0.98910 0.99814
Tab. 2. Spearman-Brown formula used for J=11.
Number Variability of subjects o2
of items 0.01 0.1 0.2 0.5 0.9 2.5 10
SB R; 0.00008 0.00742 0.02882 0.15054 0.34345 0.73125 0.94153
SB Rs 0.00050 0.04746 0.16518 0.54159 0.77716 0.94775 0.99077
SB Rs 0.00125 0.11077 0.33095 0.74707 0.89710 0.97843 0.99629
SB Rigo 0.00249 0.19944 0.49731 0.85522 0.94576 0.98910 0.99814

While the reliability of single measurement
is

C - D2

R~ —mm—,
e DD

which together gives an approximate
validity of the Spearman-Brown formula in
the Rasch model.

2.3 Estimate of reliability logistic alpha
F, statistic in estimate based on
Cronbach's alpha (21) is best suited for
normally distributed data. For dichotomous
data we might think of replacing F, by
analogous statistic from logistic
regression. In the fixed effects model of
logistic regression, the appropriate statistic
is the difference of deviances in the
submodel and in the model
X=D(B) - D(A+ B). This statistic has under
the null hypothesis asymptotically (for /
fixed and approaching infinity) the X’
distribution with x° degrees of freedom.
Hence, the proposed estimate of reliability
for composite dichotomous measure-
ments, logistic alpha 2], [1]is:
I —

Glog =1 — —.

XZ

(38)

In the following section we compare the
new estimate /ogistic alpha to the classical
estimate based on Cronbach's alpha.

3. Simulation example

This simulation is dedicated to the
following example: | = 20 patients
answered to J=20 yes/no items of quality
of life survey. The item levels B, were
supposed to be equidistanton<-0.1,0.1>,
patients' true values of QOL were assumed
to be normally distributed with mean u =0
and variance o2 (55 values of o2 were
chosen from interval <0.01, 10> to get 55
values of reliability approximately
uniformly distributed oninterval ).

For each combination of /, Jand the true
reliability was enumerated by formula (30)
and 500 data sets generated: Set of /
patients'life quality levelsT, was generated
from N(0,o;). QOL survey answers Y,
were generated from the Rasch model (23)
andestimates ¢, andg,, were computed
fromthe data.

From obtained 500 estimates &, and
500 estimates ¢, the bias and mean
squared error (MSE) were computed and
plotted outin Figure 1and 2.

© 2010 EuroMISE s.r.o.
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Other testing situations (number of items
J=11and / = 30 and number of patients
I =30 and 50) were studied, too. We
observed smaller bias and MSE in
G, particularly for true reliability <0.75.
Inferior results of the logistic alpha were
obtained for reliability close to and for high
number of patients in proportion to the
number of items. The latter might be a
consequence of the fact, that while statistic
X used in (38) is appropriate for fixed
effects model of logistic regression, in (23)
we expect a mixed effects model. Achance
of improvement lies in replacing statistic X*
by even more appropriate one.

4. Analysis of cardiac data

The dataset SPECT heart data [23]
describes diagnosing of cardiac Single
Proton Emission Computed Tomography
(SPECT) images. Each of the patients is
classified into two categories: normal and
abnormal. The database of 267 SPECT
image sets (patients) was processed to
extract features that summarize the
original SPECT images. As a result, 22
binary feature patterns (22 partial
diagnoses based on SPECT) were created
for each patient [24]. We were interested in
internal consistency of the 22 partial
diagnoses based on SPECT. Reached
estimates of reliability were: Cronbach
alpha &, = 0.839 and logistic alpha
,, = 0.827. In this case, both estimates
are quite similar and show on high internal
consistency of partial diagnoses.

5.Conclusion and discussion

In this paper, the basic principles from
classical test theory (CTT) were
summarized and used for a new definition
of reliability and new estimate of reliability
appropriate for composite dichotomous
measurements. For classical testing
situation the proposed definition of relibility
was shown to coincide with definition of
reliability in CTT. Assumptions for
Spearman-Brown formula were given for
model (22) which is more general than
classical model (1). The proposed
definition and estimate of reliability were
applied in the Rasch model, for which the
Spearman-Brown formula was shown to
hold only approximately.
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20 items, 20 patients
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¢ Cronbach's alpha
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Fig. 1: Estimated Bias and its confidence interval for classical and logistic
estimator of reliability

20 items, 20 patients
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Fig. 2: Estimated MSE for classical and logistic estimator of reliability

The proposed estimate logistic alpha was
shown to possess better properties
(smaller bias and MSE), in particular for
true reliability <0.75 and the number of
items exceeding the number of patients.
The chances of improvement of the new
estimate for true reliability close to and for
higher number of patients were discussed.
Estimation of reliability on binary data was
demonstrated on cardiac data. Work
presented in this paper could lead to more
precise estimation of reliability for binary
data, which could contribute to many fields
of biomedical research.
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