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Summary

We deal with the relation between the
generalized entropy (f-entropy, a family of
functions that include several biodiversity
measures) of a discrete random variable
and the minimal probability of error (Bayes
error) when the value of this random
variable is estimated. Namely the tightness
oftheirrelation is studied.

Morales and Vajda [1] recently introduced
a measure called average inaccuracy that
aims to quantify the tightness of the
relation between the posterior Bayes error
and the power entropies. It is defined as a
standardized average difference between
the upper and the lower bound for the
posterior Bayes error under given entropy.
Their concept can be generalized to any
strictly concave f-entropy and used to
evaluate its relation to the Bayes
probability of error. However, due to a
complex form of the formula of the average
inaccuracy, it is difficult to compare the
average inaccuracies of most f-entropies
analytically.

We propose a smooth approximation of the
lower bound for the posterior Bayes error
under given f-entropy that simplifies the
formula of the average inaccuracy. We
show that under this approximation, the
quadratic entropy has the tightest relation
to the posterior Bayes error among f-
entropies.

The quadratic entropy has the tightest
relation to the posterior Bayes error (in the
sense described in this paper) than the
Shannon's entropy and other functions that
belong to the family of f-entropies, like
Emlen's index, Ferreri's index and Good's
index.
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1.Introduction

Let X and Y be discrete random variables
with values in finite sets X = (x,,...,x) and
Y = (y,,....y,). Let Z be a random variable
that is absolutely continuous with respect
to the Lebesgue measure with probability
distribution P, on some set Z < R. We
denote P(x) = P(X = x), the joint distribution
of X and Y as p(x,y)=P(X=x, Y=y), the
conditional distribution of X under given
Z=7z asp(X|z)=P(X=x|Z=2z) etc.,i.e.the
arguments in the probability distribution p
denote the space and random variable
which they refer to.

The uncertainty associated with a random

variable X is traditionally measured by the
Shannon's entropy

H(X)==) p(x)In p(x)

xeX
with convention 0 In 0 = 0. It is intuitively

related to the minimal probability of error
(the prior Bayes error)

e(X)=1- max p(x)

when the value of X is estimated. The
conditional Shannon's entropy

H(X|Z)=[H(X|Z=2)dP,(z)=

- 7.[ Z p(x|z)In p(x|z)dP,(z)

7 xeX

and the average minimal posterior
probability of error (the posterior Bayes
error)

e,(X|Z)=1 fj‘mz%(xp(x | 2)dP, (z)

are related in a similar manner. Fano [2]
and Kovalevsky [3] were among the
first who studied the relationship
between the entropy and the Bayes
error. They derived attainable bounds
for Shannon's entropy H(X) under
given prior Bayes error e(X). Since
these bounds are continuous and
strictly increasing functions of the
Bayes error e on the interval [0,(r-1)/r],
the bounds for the prior Bayes error
under given entropy are well defined.
Fano's and Kovalevsky's findings were
later broaden to more general classes
of entropies by various authors, namely
to all Schur-concave entropies by
Vajda and Va$ek [4]. Vajda and VaSek
also retrieved corresponding bounds
for conditional entropies and the
posterior Bayes error.

Recently, Morales and Vajda [1]
studied tightness of the relationship
between the prior and posterior Bayes
errors and a class of power entropies.
They numerically compared tightness
of the relationship between the power
entropies and the Bayes error and
showed that the quadratic entropy
seems to give at average the most
accurate estimate of the posterior
Bayes error.

We deal with the tightness of
relationship between the Bayes errors
and the family of f-entropies,
introduced by Zvarova [7], which
include many of the functions used for
measuring biological diversity with
applications in biology and medicine,
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i.e.inthe cancer research (Maley et al. [5]),
or in the research of relations among
human populations (Chak-raborty [6]).
Some of the power entropies are also
inluded in the f-entropies family. We
propose an approximation of the lower
bound of posterior Bayes error under given
f-entropy that simplifies the formula for
average inaccuracy. Then we show
analytically that the quadratic entropy has
the tightest relation to the prior Bayes error

among f-entropies under our appro-
ximation.

2.The f-entropy

A generalization of entropy, called f-
entropy, was suggested by Zvarova [7].
Here we will briefly recall its derivation.

Assume that p(x) is absolutely continuous
with respect to g(x),i.e. q(x) =0 = p(x) =0,
x ey and the convention 0£(0/0) = 0 is
used. The information divergence

D(p(x)[|g(x))="" p(x)In(p(x)/g(x))

xeX

of two discrete distributions p(x) and g(x)
defined on the space y was proposed by
Kullback and Liebler([8].

The entropy

H(X)==>" p(x)In p(x)

xeX

and the mutual information

(XY . p(x,y)
(D=2, 2 P

were introduced by Shannon [9]. They
satisfy equalities

1(X;Y) = D(p(x, ) || () p(1)
H(X)=I(X;X) (1)
andinequality
0<I(X:Y)<H(X)

A more general class of divergences,
called f-divergences, was proposed by
Csiszar [10]. The f-divergence of g(x) from
p(x)is
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xeX

D, (p() 11 40)= T q(x )f[p(( ;]

for any function f that is convex on the
interval [0,00), strictly convex in f(1) and
f(1) = 0. Following Zvarova [7], we can
replace the information divergence in (1)
by the f-divergence and define the
generalized mutual information by

1,(X;Y)=D,(p(x.») | p(x)p(»)),

Let f be a function that satisfies the
conditions required when defining f-
divergences and also let (f(x) - f(0))/x be
aconcave functionon[1,00). The f-entropy
is then defined by the formula

H(X)=1,(X.X)=

S p (r)f(l/p(r))ﬂ(O)[l—Zp (r)J

eX

Zvérova [7] showed that the f-entropies
share many properties with the Shannon's
entropy, e.g. that under given r = card(y)
they attain their minimal possible value
(zero) when Xis a constant with probability
equal to one, attain their maximal possible
value when X'is uniformly distributed on
and they satisfy the inequality

0<1,(X;Y)<H (X)),

Further information about f-entropies,
their characteristics and usage can be
found in the paper of Zvarova, Vajda [11]
andinthe work Horacek [12].

3.The average inaccuracy

Let r = card(x) > 2 and denote
A= {(p(X),....p(x:)):p(x) 20, X, p(x) = 1}
The bounds of f-entropy under given prior
Bayes error are given by

Hj(e)= max H (X)

1 Xe(X)=e}

respectively by

H_;(e)— min H  (X),

Xee(X)=e}

i.e. the maximum (minimum) is taken with
respect to any discrete distribution p(x) of
random variable X on y that satisfies
e(X) = 1 - max,p(x) = e. Since any f-
entropy is a Schur-concave function on A,
(see e.g. Horagek [12]), the bounds satisfy

Hi(e)=H(-eei(r-1),....e/(r-1))=
: 2 1 & =1 { r \l
) f‘.\l*@} l r—1 f[ e ] ‘ éf(ﬂ)l\Z erfljn'

when e €[0,(r-1/r)and

Hi(e)=H(l-e....

*F;(lfe)zf( ] [ k(1-ep? ]/(

l-el-(1-e),0,...,0 )=

1-k(1- n]

< 1O k-ey +1-(-k(1-0)) |

when ee|(k- 1)k, kitk+ )], ke {1,...r-1}.

Since the function (f(x) - f{0))/x is concave
on the interval [1,00) and therefore also the
function x[f(x")- f(0)] is concave on the
interval [0,1], it is not difficult to show that
the upper bound H, (e) is concave on the
interval [0, (r - 1)/r] and the lower bound
H; (e) is piecewise concave on each of the
intervals [(k - 1) /k, k I(k + 1)] where
k €{1,...,r-1}. Moreover, the convexity of f
implies that the piecewise linear function

| k-1
k—1 T
CD([):]}';[ k ]4— A "}C—l
k+1 &

'{h" [Ai 1]_h’(%ﬂ

whent e [(k-1)/k, ki(k+ 1),k €{l,...r-1}
is convex on the interval [0, (r- 1)/1].
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The upper bound for f-entropy under given
posterior Bayes error e, is defined by

max
(X.Z)ey(X|Z)=ey}

H;’(eg):{ H/(X‘Z),

i.e. the maximum is taken with respect to
any discrete random variable X defined on
x and random variable Y that satisfy
e,(X| 2) = e,. The lower bound is defined
accordingly. Since the bounds for f-
entropy under prior Bayes error satisfy the
concavity and convexity rules mentioned
above, the proof of the theorem 4.1 in
Morales and Vajda [1] can be followed to

show that
+
eB

H?(63)=(1€,g)2f(1_l

when e € [0, (r - 1)/r] and that the lower
bound is a convex, piecewise linear
function with values

1

l-e

Hf(e3)=(1e3)f( ]+f(0)es

B

when ep = ko ke {0,...,r—1},

ie. H;(eg) =D(e,).

Since these bounds are continuous strictly
increasing functions on the interval
[0, (r-1)/1, they implicitly set the bounds for
the posterior Bayes error under given
entropy. Following Morales and Vajda, we
denote these bounds

ez, (H)= max e,
: Hy(ey)<H

ep,(H)= max ey
’ Hy(ey)<H
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Letus also denote

1 1
a , =H, (—,.—
r.f ,f(r ]")

and recall that the power entropies are
defined by the formula

HQ(X)zall[lzp“(xﬂ

xeX
when o.>0.

(The entropy H, is defined as a limit and is
equal to the Shannon's entropy.) Note that
the power entropies are f-entropies when
o = (0, 2], namely the quadratic entropy
H,(X)is f-entropy with f(x)=x-1.

Morales and Vajda introduced a measure
of tightness of the relationship between the
power entropies and the posterior Bayes
error, called the average inaccuracy. It is
defined by the formula

1
Al (ey | H, )=—-

P

Y PG IRNE)

This measure can be straightforwardly
generalized to any strictly concave f-
entropy by replacing a.,, by o, and e, by
e, inthe formula.

Morales and Vajda stated, on the basis of
numerical computations with various
values of the parameter «, that the
quadratic entropy seems to have the
lowest average inaccuracy when
estimating posterior Bayes error among
power entropies. However, due to the form
of the lower bound for the posterior Bayes
error, it is difficult to verify this postulate
analytically. We suggest to approximate
the piecewise linear function H, (e,) by a
function

1

l-e,

ﬁf(e3)=(1—e3)f( J+f(0)eg

thatacquire the same values as the original
function when e, = ki(k + 1),
ke{0,..,n -1}. This alternative lower
bound is also a convex function on the
interval [0, (r - 1)/], it aquires the same
values as the original piecewise linear
bound in {(k - 1) /k, k : {1,...,r -1} and
therefore it cannot be higher than the
original bound. Since H ; (e,) is again a
continuous strictly increasing function, the
inverse function &;, (H)is well defined and
we can approximate the average
inaccuracy by

. 1 (o | )
AL (e, | H)=—] E;, an-e; i an .
r.f

The approximated bound is smooth when
the function f is smooth. An example of the
bounds H(e,), H'(e,) and H (e,)is dis-
playedinthefigure 1.

Using this approximation, the following
theorem can be formulated.

Theorem 1 Under the approximation
described above, the quadratic entropy H,
=1-Y _p’(x) has the tightest relation to
posterior Bayes error, i.e.

Al (e; | Hy)< Al (es|H )

for any f-entropy H, and any given integer
r>2.

Proof. RecallthatwhenH, isa f-entropy,
the function f is convex on the interval
[0, ) and strictly convex in  f(1) with
f(1) = 0. Let us first consider only those
functions f that satisfy f(0)=0. Then it
follows that f(x) has to be above zero for all
x>1.8Since H;(0)= H; (0) and also
Hi(r - 1) = H,((r - 1)), we can
calculate the approximate average
inaccuracy Al, (e;,H,), i.e. the relative area
between bounds €, (H) and &, (H), by
calculating the area between bounds
H; (e;) and H;(e;) then applying the
corresponding normalizing constant.
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Al (ey| H,) =

- 5% [, ) -e5, i) Jart =

L e - 7T e Jes -

ar._f

r i 3 1
=7 % f[leB}

+i f(r_lJ_(l_eB).
r—1 e

B

After transformation z=(r/r-1)e, we have

ALes 1H))= f:r) ] [—1}

r\z ¥ r—zr+z
l{l[;);_l(_r—zr-sz s }dz

(2)

Since f is convex, z € (0,1]and r>1, we
getfollowing inequality
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Fig. 1. The upper and lower bounds H'(e,) and the approximate lower
bound H' (e,) for Shannon's entropy.

[Griz) =) D=/

~ (r=1Y (r-z
Al (e, | 11,) 2](}(?} z{ 12sz

riz—1 r—1 r=
— ! }‘_1.7-1 = d.'_lf‘—l_gl H
friz) /() =[5 - =t S ),
riz—=1 r-—1

Now let us consider the situation when

f(riz)z Jr-z f(0)=0.Then Al (e,,H,) satisfies

f(rn  r-1
- @) AL (e;|H))=
Similarly the formula
| | im:r?)'Z[I[’;]E_f[-r_zr;ﬂ::'rf::%z—:dz_
flriz=zr+n)]-f(M _ f(1)=F (D
Fiz—zr+r)—1 -1 L1 f(ﬂ)r_lﬂf,(eﬂH,)

a,

can be converted into

Here we use the inequalities (3) and (4)
flriG=zr+nlz=rz+r) __ again (multiplied by f(/r to avoid

7(r) a potential division by zero or by a negative
(4) number) and we receive

After inserting inequalities (3) and (4) into
the equality (2) we get
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Al (e, | H,)> —

i@,
_[[f( .,

Al (e;|H,)=

1‘(0)—}41 (ey | H )}

F

F(r)+(r=1) £(0)

_[f(r")+ FOCD 5, o 1 )}
r r\TB 2

= Al (e, | I1,)

4.Conclusions
This result covers the power entropies H,

when a € (0,2] and also other f-entropies,
forexample Emlen'sindex[13]

= S pw)e —e7,
where
fla) == (/" = ™) x(0,00)(®);
Good'sindex [14]
Hgio 0 (p())= 2, ey (~In p(x))
when a € [1/2,1], =1, where
f(x)=x""(Inx)* 1, (x)

its generalization, the index of Sharma and
Taneja[15]

Hsr(s.a)(P(x))= (s—1) IZ (P(’C)I - p(x)’ )

ieM

whent € [01], s e(max {t, 1-1}, 3 -1]
(defined as alimitwhen s = f) for

fl@)=(s=)7(=*" = 2%7*)x(1,00) (2),

and the index of Ferreri [16]
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H o (p(x))=(1+a)o ™ In(l +a) —

a™' Y (1+op(x))in(l+ap(x))

a>0

where

f(x) = ["““‘)1 n(l+)—
(03

_x(x+a)
o X

x+a
In

}[(U,x] (x).
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