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Summary

The survival analysis is a set of statistical
methods dealing with time-to-event data.
In biomedical applications the event of
interest is usually relapse of the disease or
death. A special feature of the survival
analysis is censoring and truncation of
data. When censoring or truncation occurs
some information about the patients'
survival is lost, e.g. some patients are lost
to follow-up or the study ends before all the
patients die. The survival analysis methods
are used for estimation of the survival time
distribution, for identification of risk factors
that affect the survival time, and also for
predicting the survival time when risk
factors are present. Survival analysis
methods have been further developed by
the means of counting processes and
martingale theory. Univariate survival
analysis methods have been extended to
multivariate setting. The multivariate
survival analysis covers the field where
independence between survival times
cannot be assumed. Multi-state models
and frailty models represent the two main
approaches of multivariate methods.
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1.Introduction

The survival analysis is a collection of
statistical methods for analyzing time-to-
event data. The commencement of the
survival analysis dates back to the 18th
century when analyses of mortality
experience of human populations started.
During the World War I, the survival
analysis focused on engineering -
reliability of military equipment was being
analyzed. After the World War Il the
interest turned towards economics and
medicine. In 1960s, after the fundamental
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article of E. L. Kaplan and P. Meier [9] had
been published, medical applications of
the survival analysis shifted to the center of
statistical focus.

2. Basic concepts in the survival
analysis

2.1 The survival and hazard function
Let X be the time until some specified event
occurs, i.e. Xis a non-negative real valued
random variable having continuous
distribution with finite expectation. There
are several functions characterizing the
distribution of X:

oThe probability density of X:f(x),x>0.
eThe survival function;

S(x)=P(X > x)= j 1 (u)du
~1-F (),

where F(x) is the cumulative distribution
function. The survival function describes
the probability of an individual surviving
beyond time x (experiencing the event

aftertime x).
oThe hazard function:
< >
A= 1im P(x,X<x+/_\oc|X,x),
Ax—0" Ax

forall x> 0. The hazard function repre-
sents a conditional probability rate at which
an individual alive at time x will experience
an event in the next instant. There is a
close relationship between the hazard and
the survival functions:

I P(x< X <x+Ax)

AMX)= lim —
= dim T (X2

dS(x)
el o)
S(x) d

oThe cumulative hazard function:

A(x) = j:x(u)du = —InS(x).
Thus
S(x) = exp(~A(x)) = exp(f I "‘h(u)duj.

If X is a discrete random variable taking
values x, < x, <... with associated
probability mass function f(x) = P(X = x)),
i=1,2,...,the survival function is

Sx)= 2 f(x)

thehazardatx; is

A =P(X =x, |sz,)=Lx_*),i=1,2 .....
S(x;7)
where S(x) = lim_ — S(t). The survival
function and probability mass function can
be also written as (see [8])

S = [T (-2,

j:‘(jiv

TR | (9

More generally, the distribution of X may
have both discrete and continuous
components. The approach to the discrete
and continuous parts can be unified
through the notion of a productintegral: Let
A(x) be the continuous component of the
hazard function, and let A, A,,... be the
discrete components at times x, < x, <...
The overall survival functionis then

S(x) = exp(— jﬂx (w)du) [T (1-2,)

P
&0

and the cumulative hazard functionis

A= A (@du+ Y In(l-2,).

jix . Sx
B
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Let dA(x) be a differential increment of the
cumulative hazard over the interval
[x, x+dx):

dA(x)=A(x" +dx)—A(x")

=P(X e[x,x+dx)| X =2 x)

_[~In@-3,)
12 (et

for x=x,i=12,..

otherwise.

The survival function in the discrete,
continuous, or mixed cases can then be
written as

S(x) =Py (1-dA(u)),
where

Ps(1=dAG) = lim | (1= (At~ Al )

is the productintegral [8].

2.2 Censoring and truncation

Survival data possess a special feature of
censoring, compared to other statistical
data. Censoring is used when the survival
time is not known exactly, the event is only
known to have occurred within some time
interval. There are several types of
censoring: right, left and interval. In
biomedical applications, right censoring is
the most common type of censoring. It
occurs when the survival time is incom-
plete on the right-hand side of the follow-up
period, i.e. the study ends before all
patients experience the event or a patient
is lost to follow-up (dies due to reasons
other than the event of interest, withdraws
from the study, moves to another city, etc.).

Let X, X,...,X, be independent and
identically distributed (i.i.d.) survival times
and C, C,,...C, be i.i.d. censoring times.
The lifetime X; of the j-th individual will be
known if, and only if, X< C,. If C. <X the
event time will be censored at C,. Thus itis
convenient to represent the survival
experience of a group of patients by the
pairs of random variables (T,5) where
T.=min(X,C.),5,=1(X,<C,)and lis an
indicator of the event's occurring, having
value one if the event occurs, and zero
otherwise.

Another feature, common in survival data,
is a truncation. Truncation occurs when
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only those individuals whose event time
lies within a certain time interval (T, T,) are
observed. For left truncation, T, = oo in
case of right truncation, T, =0. Individuals,
whose event time is not in this interval, are
not observed and no information on these
subjects is available. This is in contrast to
censoring where there is at least partial
information available on each patient.
When data are truncated, a conditional
distribution has to be used in constructing
the likelihood (see [10]).

A critical assumption for the likelihood
construction is the independence of
lifetimes and censoring times. Censoring is
said to be independent if the failure rates
that apply to individuals on trial at each
time t> 0 are the same as those that would
have applied had there been no censoring
[8]. Thus the requirement is that at each
timet

_ P(Teltr+An|Tzn_  PTe[ti+An|Tzt,Y(H=1)
lim = lim s
b At A0 Ar

where Y(t) = 1 indicates that the individual
is at risk of failure at time t (has neither
failed nor been censored prior to f).

2.3 Counting processes and
martingales

An alternative approach to develop
inference procedures for censored data
involves counting processes. A counting
process N = {N(f), t > 0} is a stochastic
process with N(0) = 0 whose value at time ¢
counts the number of events that have
occurred in the interval (0,f]. The sample
paths (realizations) of N are nonde-
creasing, right-continuous step functions
that jump whenever an event (or events)
occur. In the counting process formulation,
the pair of variables (T,8,) introduced in
Section 2.2 is replaced with the pair of
functions Nt), Y(t),i=1,...,n where

N.(t) = no.of events observed in [0,t] for unit i

1 unit i is at risk at time 1,

0  otherwise.

Y,(f)={

N({) is a counting process, while Y(t) is
a predictable process, i.e. a process
whose value at time t is known
infinitesimally before t at time f. This
process has left-continuous sample paths.
Right-censored survival data are included
in this formulation as a special case:

|

N@=I(T <t 5=1) and Y(t)=I(T >1)

To deal with all on-study information of
each patient, a term history (or filtration) is
used. A history, denoted {F, t >0} is a c-
algebrageneratedby N, and Y

F=c(N,(s).Y(s"),i=1,..,m0<s<1),
where Y,(s") = lim, . ¥, (u).

Thus F, contains the information up to and
including time t. The information in F,
increases with increasing time on study,
i.e. F,cF, fors<t[4]. Let dN/t) denote the
increment of over the time interval
[t t+db):

dN,(1) = N,((t+dt) )= N,(1").
Foreach t>0 let
E_ =c(N,(5), Y (s),i=1,...,m0<s <1)

denote the full history of the processes
N(s), Y(s),i=1,...,nup to but notincluding

i

t. Then (see [4]):

E(dN,(t)|F ) =Y, ()A,()dt,

where A(f) is the hazard function. The
process

A(f) = J:K(s)hi(s)ds, t>0,
is called the intensity process. At each
fixed t, this process is a random variable
which approximates the number of jumps

by N, over(0,f]. Infact, EN(t) = EA(t) and
thus [4].

E(NV(D)[F_)=EA(D|F_)= A1)
Forany given idefine the process
M,(1)=N(t) 7'[;}"(5-)1, (s)ds, 1>0,i=1,..n.

(1)
Equivalently, the process can be defined
M.(1)= J‘;dM(.(s),
where

dM (1) = dN, (1) ¥, (), (0)d.
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It can be seen that E(dM(t)|F,) =0 forall t
and E(M(t)|F,) = M(s) for all s < t[4]. A
process that satisfies these (equivalent)
conditions is a martingale. According to the
Doob-Meier decomposition theorem (see
[4]), any counting process may be uniquely
decomposed as a sum of a martingale and
a compensator C which is a predictable,
right-continuous process with C(0) = 0. As
an example, according to (1)

N.(0)=M,(1)+ jﬂy (s),(s)ds

-M@+Aw, P

where M(f) is the counting process
martingale corresponding to N(f) and Af)
is the compensator of the counting process
N, with respect to the filtration F,. In terms
of differential increments, the process (2)
can be equivalently written as

dN (t)=dM (t)+ Y ()L, (¢)dt.

The approach using martingale methods is
very useful in yielding results for censored
and truncated data, especially for
calculating and verifying asymptotic
properties of test statistics and estimators.

3. Non-parametric and semi-parametric
models

A principle objective of the survival
analysis focuses on estimation of basic
quantities (the survival and hazard
function) based on censored data. To
analyze survival data parametrically,
assumptions about the distribution of the
failure times would have to be made. To
avoid such assumptions, it is common to
use non-parametric models. The simplest
non-parametric estimate of a distribution
function is the empirical distribution
function

no.of samplevalues < x

F,(x)= ;
n

when a continuous distribution is
estimated by a discrete one. For an
uncensored sample of n distinct failure
times, the empirical survival function is
then estimated by S (f) = 1 - F.(t). The only
problem with this approach is the
censoring - it is not taken into account in
standard statistical methods. Important
steps in the development of appropriate
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methods were done by Kaplan and Meier
[9]and Cox[3].

3.1 Kaplan-Meier and Nelson-Aalen
estimators

The Kaplan-Meier estimator (called also
the product-limit estimator) estimates the
survival function by

S(t)= ]‘[(1
where d there are events observed attime
t and R, is the number of individuals still at
risk at time ¢ (uncensored survivors just
before t). The variance of the estimator can

be estimated using Greenwood's formula
(see[11]):

d('
Ri

PE@O) =50’ Y ﬁ

it F
EFEE

The product-A(s) = —In(S(¢)).;an also be
used to estimate the cumulative hazard
function:

An alternative estimator of the cumulative
hazard function was proposed by Nelsonin
1972 [12] and rediscovered by Aalen in
1978 1]:

7\(:)=Z%.

it :
M[ <t i

The variance of the Nelson-Aalen
estimator was estimated by Aalen using
counting process techniques and is given
by o J

VA= 5.

P f
U{.J i

Based on the Nelson-Aalen estimator of
the cumulative hazard function, an
alternative estimator of the survival
function becomes

S(r) = exp(=A(1)).

Suppose now that n individuals from
a homogeneous population are put on
a study at time 0. Let N, be the counting
process and Y; be the at-risk process of the
j-thindividual, as described in Section 2.3.
Let

N@n=>" N0 and v.o=3 1@, 0<t<w.

N.(f) denotes the total number of observed

failures in the interval, while Y.(t) is the
number of individuals in the entire study
group that are at risk at time t. The Nelson-
Aalen estimator of the cumulative hazard
can be written in the counting process
notation as

T [ W)

Al J-“ Y.(u)

dN (u),

where J(u) = I(Y.(u) > 0 with the
convention that 0/0 is interpreted as 0 [8].
The Kaplan-Meier estimator of the survival
functionis then

S(n)=[J(1-dA)).

A common interest is to compare two or
more samples, i.e. to test whether there is
a significant difference in survival
experience of distinct groups of patients.
Several generalizations of standard non-
parametric tests have been developed to
deal with censored and truncated data.
The most common tests are the log-rank
test, Gehan-Wilcoxon test and Peto-Peto
test. For more information, see e.g.[10].

3.2The Cox model

In clinical studies we typically examine the
association of several risk factors with the
occurrence of the event of interest. Various
patients' characteristics may be
associated with patients' survival
experience (e.g. age, sex, blood pressure,
...). The Cox proportional hazards model
has become a popular approach to
modeling covariate effects on survival. In
this model the intensity process (hazard)
forthe i-th subjectis

A ()= Y (0)hy () exp(p TX;);

where Y((t) is the at-risk process, A, is the
baseline hazard (common to all individuals
in the study population), X; is the vector of
covariates of individualiand 3 is a vector of
unknown regression parameters. In this
model, the ratio of hazard functions of two
individuals is constant (the baseline
hazard A,(f) is canceled out), thus the
temporal effect is separated from the effect
of the covariates. Estimation of the
regression coefficients is based on
maximizing of the partial likelihood
function, which was introduced by Cox in
197213].
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The partial likelihood function for  reads

. exp(BTX)
L(B)*H—Z exp(B7 X))’

FERU;]

where t, < ...<t, are the uncensored failure
times of the study group, R(t) is the set of
subjects at risk of failure at time £ (just prior
to time t), and X; denotes the covariate
vector for an individual failing at t. The
partial likelihood function is treated as
a standard likelihood, and inference is
carried out by usual means.

4, Multivariate survival analysis

In most clinical applications the univariate
survival analysis assumes that the
observed survival times are mutually
independent (i.i.d. failure times). In
practice, however, dependence can occur
for very different kinds of data, e.g. survival
of twins or other several individuals, similar
organs, recurrent events or multi-state
events. The multivariate survival analysis
covers the field where independence
between survival times cannot be
assumed. According to [7], the various
approaches to analyzing multivariate
survival data fall into four main categories:
multi-state models, frailty models,
marginal modeling and non-parametric
methods. The data structure should be
considered as well. The data can be
parallel (where the number of failures is
fixed by the design of the study) or
longitudinal (where the number of failures
is random for each object under study).
The data sets are classified into six types:
several individuals, similar organs,
recurrent events, repeated measure-
ments, different events and competing
risks. Relation of the data types to the two
main approaches of analysis (multi-state
and frailty models) is described in Table 1.
Only these two approaches to analyzing
multivariate survival data are presented in
this paper. For more information on
marginal and non-parametric methods,
seee.q.[7],[16],or[8].

4.1 Competing risk and multi-state
models

Multi-state models are commonly used for
describing the development of longitudinal
data. They model stochastic processes,
which at any time point occupy one of a set
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Tab. 1. Overview of data types and approaches; x means relevant,
blank not relevant. Adopted from [7].

Type of data Multi-state Frailty
Several individuals X X
Similar organs X
Recurrent events X X
Repeated measurements X
Different events X

Competing risks X

of discrete states. In medicine, the states

can be e.g. healthy, diseased, and dead. A

change of state is called a transition. The

competing risk model is an example of
multi-state modeling. In competing risks,
various causes of death “compete” in the
life of patient, and occurrence of one event
precludes occurrence of the other events.

There are generally three areas of interest

inthe analysis of competing risks [8]:

1. Studying the relationship between a
vector of covariates and the rate of
occurrence of specific types of failure.

2. Analyzing whether patients at high risk
of one type of failure are also at high
risk for others.

3. Estimating the risk of one type of failure
after removing others.

Suppose that individuals under study can
experience any one of m distinct failure
types. For each individual, the underlying
failure time T and a covariate vector X are
known. The overall hazard function at time
tis

PH<T<t+AM|T20,X
A, X)= lim ( | ).
Ar—0™ At

To model competing risks, a cause-specific
hazard function is considered:

Pt<T<t+At,J=j|T>2t,X
3,6 X) = Tim ( Jl )
At—>0" A[

forj=1,..,m is arandom variable repre-
senting the type of failure, and t > 0. In
words, A(t,X) specifies the rate of type j
failures, given and in the presence of all
other failure types [8]. If only one of the
failure types can occur, then

m

AELX) =D N (6 X)
due to the law of total probability.

Itis possible to calculate the Kaplan-Meier
estimator for each type of failure
separately, but it is difficult to give this
a survival function interpretation and
therefore this is not recommended [7].
Instead, generalizations of the Kaplan-
Meier and Nelson-Aalen estimators can be
made (see e.g. [8]). The generalized
estimator includes all causes of failure and
is usually denoted the Aalen-Johanson
estimator.

The Cox model for the cause-specific
hazard functions can be considered:

k/.(t,X):kO,(t)exp(B/.TX), j=1,...,m.

Both the baseline hazards A, and the
regression coefficients 3, vary arbitrarily
over the failure types. Estimation and
comparison of the coefficients 3, can be
conducted by applying asymptotic
likelihood techniques individually to the m
factors.

A traditional approach to multi-state
models is based on the Markov models.
Consider first a homogeneous population
with no covariates. Let A(f) be the state
occupied at time t > 0 with probability
model of A(f) being the Markov process.
The individuals under study move among
m>1 discrete states.
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If a randomly chosen individual is in state i
at time f, the transition rate (or intensity)
fromi toj attime is givenby

dA,(6) = PLA( +dr) = j| A@)0<u <1, A7) =i]

=PlAF +dt)y=jlA(t)=i], t>0,

which holds for all A(u), 0 < u<t with
Aty=i andi je {1,..m}, j=i The
process is memoryless in that only the
current state occupied is relevant in
specifying the transition rates [8]. In the
continuous case, dA(t) = A,(t)at for all
ij =1,...m so that A(f), i # jis the
continuous-time intensity function for i-to-
transitions. Estimation of the cumulative
intensity functions  A,(f) proceeds as
follows [8]: consider a possibly right-
censored sample of n individuals. For k =
1,..,n, let N,(f) be the right continuous
process that counts the number of
observed direct i-to-j transitions for k-th
individual, ij=1,...m,i=j. LetY,(t)bethe
corresponding at-risk process. Define the
filtration process as

E‘ = (N;jk(r)sYi.k(qu)aO Sus I),

Fork=1,..,n;ij=1,.,m andsuppose that
censoring is independent, so that

P(dN (1) =1[F ) =Y, (0)dA; (1),

which must hold for all ijkand t > 0. The
Nelson-Aalen estimator of A,(t) is then
givenby

dN, (1)

dA, (1) = 70

foralli=j.

When the vector of covariates X is pre-
sent, the continuous-time modulated
Markov model can be specified for the
underlying intensity function

P(A (t +dh=j|4.(t7)=1, X
Aa(t) = fim DAL+ =/ AE) =0 D)
d—0* dt

Parametric and semi-parametric models
for A, are obtained analogously as earlier
and may be foundin [8].
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4.2 Frailty models

Frailty models represent an extension of
the Cox proportional hazards model. The
concept of frailty provides a way to
introduce random effects into the model to
account for association (correlation) and
unobserved heterogeneity. This hetero-
geneity may be difficult to assess but is
nevertheless of a great importance. The
frailty is an unobserved random factor that
modifies multiplicatively the hazard
function of an individual or a group of
individuals. The key idea of these models is
that individuals most “frail” die earlier than
the others [16]. The frailty models are
relevant to lifetimes of several individuals,
similar organs and repeated measure-
ments. They are not generally relevant for
the case of different events [7].

First, bivariate models will be considered.
Let
Sy, (t,8)=P(T 21T, 21,)

be the joint survival function for the two
survival times T, and T, where S,(t{) is
the probability that both subjects under
study will be alive attime £.

The marginal survival functions are then

Si(t,)=P(T, 21,) = 5,(4,,0)
8,(,)=P(T, 2t,) = §,,(0,1,).

If T, and T, are independent,
Su(tot) = Si(t)S,(t,). The joint hazard
functionis

My (t:1) = lim
P AP

and the marginal hazards are

P(T e[t ,t. +AD|T, = t,
)= i PEELL AT 20)
Ars0t At

Fori=1,2. To address heterogeneity in the
survival times it is assumed that the
lifetimes are conditionally independent, i.e.
T, and T, are independent given the
randomeffect Z called frailty:

P(T e[t t,+ AN T, €[t,,t, +AD) | T, 21))

Slz(tlvfz | Z) :Sl(tl ‘Z)Sz(fz | Z).

Usually, the frailty is assumed to act
multiplicatively on the hazard, so that

M) =20 (1) and  S,(t,|Z)= S, (t)"

for some baseline hazard A,(f) and
baseline survival function S,(f) (when
known covariates X, are present, the
hazard may be expressed as

Ty (1) = 1y (1) exp(BT X))

through the Cox regression model). Under
the assumption of multiplicative frailty, the
cumulative hazards are

A1) = ZA (1))
The conditional joint survival function is
then
S,(t,4|2)= Sm(Il)ZSoz(Iz)Z
=exp(—ZA (1)) exp(—ZA, (1,))
=exp(—Z(Ag (1) + Ay (25))).
As the frailty Z is an unobserved effect, it
needs to be 'integrated out' of the survival
function. This is done by the Laplace

transform, which is defined for a random
variable Z as

L,(s)= J.cxp(—sz)g(z)dz = E(exp(—sZ)).

Where ¢(z) is the probability density of Z.
For the bivariate survival function thus

Sptt,)= J-:Slz(tl 1y 1 Z)g(z)dz
= [ exp(-Z(Agy (0)+ A, ))g(2)dz

=L, (Ap(1)+Ay(,)),

where the Laplace transform of g(z) is
evaluated at

§=A, (1) +Ap(t,).

In many applications, the frailty Z is
assumed to follow some distribution with
the explicit Laplace transform. A standard
(and most widely used) distribution for
frailty is the gamma distribution.
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The random variable Z is gamma
distributed with parameters k and ®
(Z ~ T'(k, ®)), if its probability density
functionis

0°z" " exp(-02)

g(z)= ) , kOB >0and z>0,
With EZ = E, varZ = iz
0 0

The gamma function in the denominator of
the probability density function is defined
as

I'(k)= J-:uk_l exp(—u)du, for k> 0.
[tsatisfies T(k+1)= kT (k).

The gamma distribution fits very well to
failure data and is also convenient from
computational and analytical point of views
[19].

Suppose the common frailty component Z
has a gamma distribution with parameters
k=0 =1/c". The Laplace transform of the
gammadensity isthen

]

Which leadsto (see[7])

lV'e
|
Sp(h.t,)= p 3 ]
l+6 Ay (1) +0 " Ap(ty)

To extend the bivariate model to a
multivariate one, consider a set of
clustered data where for the j-th individual
in the i-th group (or cluster) there are the
observation times t, and the vector of
covariates X,. The assumption is, again,
that given X and a random effect Z; the m,
lifetimes in group i are independent. Thus
the joint distribution of these lifetimes given
Z is the product of the marginal
distributions given Z. The marginal
hazards then satisfy

Dt | X Z) = Z ) (2, | X))

i

When the hazards are modeled using the
Cox proportional hazards,
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Ao (8 1 X)) = 2o (2, ) exp(B "XU).

If the cluster-specific random effects Z,
have independent gamma distributions,
then the unconditional survival for the m,
lifetimes in cluster is

8,0, X) = [ T18:(1 X, Z)2(z )z,
7
where 7, = (,.1,.K .1, ). X, =(X,)

m.Xn
i

This can be solved using the Laplace
transform (see [14])

I."‘c?2
S(r{,X,){iJ ,
W

v =146 A1) exp(B X, ) +L +0 A (1, Jexp(PTX, ).

Where

Different choices of distribution for the
frailty Z are possible, e.g. the family of
positive stable distributions or the PVF
(power variance function) family. For more
information about these, see [7]. The frailty
Z may also be treated non-parametrically.
Although it is desirable to have completely
non-parametric estimate of the survival
function, the estimates are mathematically
complicated and are not of major
importance [7].

Statistical models that use counting
process notation and are convenient for
these types of analyses are slightly
different from those used until now. In the
previously used models, the intensity
process A(f) at the follow-up time ¢ given
the covariates X was

AMO)dt = P(AN()=1| N(s),0< s <t, X).

In this expression it is assumed that jumps
in N are of a unit size only. However,
recurrent and correlated failure time data
include jumps of a size greater than one
(more than one event can be recorded for
an individual at a specific follow-up time).
Thus itis natural to model the mean jumpin
N acrosstime:

dA()=E(dN(1)| N(5),0<s <1, X).
in the cumulative intensity process. The

Cox-type model for the intensity process is
then

dA(t) = dA,(t)exp(p’ X).
Formore details, see [8].

5. Conclusion

The survival analysis is a collection of
specific statistical methods. In this paper, a
short overview of these methods was
presented. The standard univariate
models were extended to multivariate
models dealing with parallel and
longitudinal data. The two major
multivariate concepts were introduced:
multi-state and frailty models.
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