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Deformable image registration is a fundamental technique in computational 
neuroanatomy. An iterative multilevel block matching technique with the use of several 
recent inventions is proposed here. A symmetric multimodal similarity measure allows 
to register subject images to an arbitrary digital brain atlas. Smooth deformations 
produced by scattered data interpolation based on compactly supported radial basis 
functions suppress gross inter-subject differences and preserve the localized anatomical 
variability which may be further studied with selected automated morphometry 
methods. Four similarity measures are tested in an experiment with image data obtained 
from the Simulated Brain Database and a quantitative evaluation of the algorithm is 
presented.  
 
Keywords: image processing, image registration, MRI images, computational 
neuroanatomy, radial basis functions  

 Introduction  

One of widely applied methods in computational neuroanatomy is a voxel-based 
morphometry (VBM), which has recently become a subject of discussion [1], [2]. It 
interrogates anatomical MRI scans on voxel by voxel basis, in order to demarcate regions 
with significant anatomical differences between a group of patients and a control group. 
Several image preprocessing steps are included in the method's pipeline and deformable 
image registration is the one playing a crucial role. Its central idea is to find local forces 
which will deform a floating image to make it more similar to a reference image. The 
involved non-linear transforms are either based on smooth basis functions [3], [4], [5] or they 
are physically interpreted, e.g. by mechanics of continuum [6], [7], [8]. The former group of 
methods produces smooth low-dimensional deformations which are able to suppress only 
gross anatomical inter-subject differences, whereas the goal of the latter methods is to achieve 
a perfect match. In [9], [10], images in VBM are put into a stereotaxic space by an affine 
transform and then they are warped to the reference image by low-dimensional parametric 
deformations based on lowest-frequency components of discrete cosine transform. 
The coefficients are searched in an optimization algorithm which minimizes the residual 
squared difference between the images and simultaneously maximizes the smoothness of the 
deformations. Only one scaling parameter is incorporated to count for differences in 
intensities of the images, what makes it suitable for monomodal images only.  
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In this paper, we propose a deformable registration algorithm proper for multimodal images. 
Below, we first explain the methods used in our algorithm and then we present experimental 
results obtained from its evaluation.  

Methods  

Our deformable registration is performed by a multilevel block-matching technique, see fig 1. 
A floating image N is deformed to match a reference image M in an iterative process. 
A resulting displacement u is made up from local translations of the blocks of the floating 
image N by radial basis function (RBF) interpolation. The translations representing warping 
forces f are found by maximizing symmetric regional similarity measures. The floating image 
N is assumed to be brought into the same coordinate space as the reference image M by 
a previous linear registration step.  

  

 

Fig. 1. Deformable registration scheme (see the text for details). 

 
Regional symmetric similarity measures  

Various multimodal similarity measures are examined here. Regional similarity is computed 
by simply averaging point similarities over the region [11]:  
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where SW denotes a similarity measure of a region W with the center point w and KW 
overlapping voxels x in which point similarities S are computed. The point similarity measure 
SMI derived from the well known global similarity measure mutual information is defined by 
[11]:  
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                                                                                       (2)  

 where pMN denotes joint distribution of intensities and pM, pN are marginal intensity 
distributions of the images M and N respectively. Another point similarity measure SUH is 
proposed in [6]:  

                                                    (3)  

 where SH is a point similarity measure derived from the global joint entropy of the images. 
All the defined point similarity measures depend on the joint intensity distribution, which is 
estimated from the joint histogram, which is not known until the images are perfectly 
matched. Thus, it is usually estimated from the images aligned by the previous registration 
step. In this way, the deformable registration is done also in [12], where a region similarity 
measure based on conditional probabilities is proposed. It is rewritten here as another point 
similarity measure:  

                                                                                                            (4) 

which is defined by the probability of a correspondence between a given intensity m of 
the reference image M and any intensity n of the floating image N. The conditional probability 
densities are extracted by normalizing the values of each row of the joint histogram parallel to 
the axis with the intensities of the floating image N. Another similarity measure depending on 
probability rather than uncertainty is derived here from (2):  

                                                                                              (5)  

  
 At each level of subdivision, translations of rectangular blocks of the floating image N are 
searched in an optimization algorithm, which maximizes a selected region similarity measure. 
Inspired by symmetric registration proposed in [13], the symmetric regional similarity 
measure is obtained here as a sum of two partial similarity measures. These are computed in 
the blocks of the floating image according to the reference image blocks as well as in 
the reverse direction.  

To avoid getting trapped in local minima, a combination of extensive search and hillclimbing 
algorithms is used here. First, a space of all possible translations is searched with a relatively 
large step. P best points are then used as start points for the following hillclimbing. 
The minimum of P local minima obtained by the hillclimbing is then declared as the global 
minimum.  
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Multilevel deformation  

Once the local translations are found, the displacement u is computed separately for each of 
D dimensions by interpolation with the use of RBF by:  

                                                                             (6)  

where uk(x) is the displacement of a grid point x in the kth dimension, R is the radial basis 
function of the distance ||x-wi|| between the grid point x and the center of the i th block wi. 
The coefficients αi are computed by putting the translations f into (6) and solving the resulting 
linear system of B equations separately for each dimension k. The compactly supported 
Wendland's RBF, which was successfully used for landmark-based deformable registration in 
[4] is used here. Its mathematical properties hold for different spatial support, which is 
important for the multilevel strategy. For each level of subdivison, the block size is set to 
the half of the size at the previous level. The displacements are gradually incremented over all 
levels, refining the resulting deformation in the coarse-to-fine manner. The regions containing 
poor contour or surface information can be eliminated from the matching process and 
the algorithm can be accelerated in this way. The subdivision is performed only if at least one 
voxel in the current region has its normalized gradient image intensity bigger then a certain 
threshold, see fig. 2.  

 

 

Fig. 2. Illustration of five-level adaptive subdivision. 

 
Tissue probability maps  

The computation of the global joint histogram is not the only way how to estimate the joint 
intensity distribution of the images M and N. When the registration is done in a stereotaxic 
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space, tissue probability maps are often available, representing a kind of prior information, 
which can be used. Here, another estimate of the joint intensity distribution is made with their 
use. It is further combined with the usual estimate obtained from the global joint histogram by 
a weighting parameter λ:  

                                                                            (7)  

  
The intensities representing main tissues in the brain images are emphasized in this way.  

The joint intensity estimates are re-computed in the each iteration of the registration 
algorithm. As the intensities of the floating image are not spread on a regular grid, simple 
unitary increments of individual histogram bins cannot be done. Instead of that, all histogram 
bins corresponding to the reference image voxels in the neighborhood of a displaced floating 
image voxel are increased by a value equal to the value of an interpolation kernel function. 
Cubic B-splines are used for that purpose in the generalized partial volume interpolation 
(GPVE) described in [14]. This approach is used here to compute the global joint histogram. 
In the computation of the joint distribution estimate based on the tissue probability maps, the 
interpolation has to be done among the voxels of the floating image. Thus, some ideas from 
the distance-weighted scattered data interpolation methods were adapted here and the locally 
bounded kernel function described in [15] is used in the partial volume interpolation scheme.  

Experiment and results  

The performance of the proposed algorithm with various similarity measures was evaluated 
with the use of 2D image data obtained from Simulated Brain Database (SBD) [16]. The 
original size of the SBD transversal slices is 181×217 pixels with the pixel size 1×1 mm. For 
the evaluation purposes, the images were padded to the size of 217×217 pixels. The square 
image size is convenient for the subdivision scheme. Synthetic deformations were composed 
from random translations at 10% randomly selected pixels in transversal slices. These force 
fields were smoothed by gaussian filtering with random standard deviation (σ=10±5 mm) to 
obtain final displacements which were then applied on 20 intensity images and corresponding 
segmented images. The average initial overlap error was 41.0%. The deformations were then 
recovered by the proposed deformable registration algorithm and the average decrease of the 
overlap error ∆e was computed. T1 weighted, T2-weighted and PD (proton density) images 
with 3% noise and 20% intensity nonuniformity were used as floating images and the T1-
weighted image with no noise and no intensity nonuniformity was used as the reference 
image. The results for various levels of decomposition are summarized in tab 1. The overlap 
error got smaller up to the 5th level, when the subimages had size of 7x7 pixels. Although the 
next level gave an increase in the global mutual information, the alignment measured by 
overlap errors and also by visual inspection was constant or worse. This level was considered 
as the maximum subdivision level for this algorithm.  
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Tab. 1. Quantitative validation of the proposed algorithm. The averages of the overlap error 
decrease ∆e were computed for various similarity measures, various image pairs and various 

levels of decomposition. 

∆e [%]  
Images  

SPC  SUH  SMI  SPMI  

1st level  

T1-T1  5.2  1.6  1.7  1.5  

T1-T2  5.3  1.3  1.4  2.8  

T1-PD  4.4  1.5  1.3  2.2  

2nd level  

T1-T1  12.6  8.3  8.4  8.5  

T1-T2  12.3  4.7  4.8  7.4  

T1-PD  10.1  5.6  6.0  5.8  

3rd level  

T1-T1  22.6  17.9  17.9  19.5  

T1-T2  21.2  9.8  9.8  16.4  

T1-PD  17.1  11.4  12.3  12.2  

4th level  

T1-T1  27.2  24.8  24.9  26.6  

T1-T2  25.3  16.0  16.2  23.3  

T1-PD  20.2  15.6  16.4  17.4  

5th level  

T1-T1  27.7  26.8  27.1  28.5  

T1-T2  25.1  19.4  19.9  24.9  

T1-PD  20.0  16.9  17.9  19.2  

Conclusion  

An algorithm for low-dimensional atlas-based registration of MRI images was presented. 
Four various symmetric region similarity measures were studied in an experiment in which 
synthetic deformations were recovered and the performance of the algorithm was quantified 
by the decrease of overlap error in segmented images. The similarities were measured with 
the use of joint histogram and tissue probability maps from MRI brain atlases. The overlap 
error was lower with the similarity measures SPC and S PMI depending on probabilities than 
when the similarity measures S MI and SUH depending on uncertainty were used. In our 
implementation, partial volume interpolation scheme was used, so that it was unnecessary to 
compute the deformed floating image during the registration process. The proposed algorithm 
is suitable for the voxel based morphometry, as the precision of the registration can be 
controlled by the maximum level of decomposition. Thus, only gross inter-subject anatomical 
differences can be suppressed and the important variability for statistical parametric tests can 
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be preserved. In addition, the use of multimodal similarity measure allows to use an arbitrary 
available brain atlas without any need to transform intensities in the images to obtain 
monomodal data.  
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