
Original Article en31

HL7apy: a Python library to parse, create and handle HL7

v2.x messages

Vittorio Meloni1, Alessandro Sulis1, Daniela Ghironi2, Francesco Cabras1, Mauro Del Rio1, Stefano Monni1, Massimo Gaggero1,

Francesca Frexia1 Gianluigi Zanetti1

1 CRS4, Pula, Italy
2 Inpeco SA, Lugano, Switzerland

Abstract

HL7 version 2 is the most popular messaging standard for
clinical systems interoperability. Most of the tools for mes-
saging management are Java or .NET based, while Python
programming language lacks of comparable solutions. This
paper describes HL7apy, an open-source HL7 v2 compli-
ant messaging library, written in Python. The library offers
means to create, parse, navigate and validate messages.

As an example application, we present a full implemen-
tation of the IHE Patient Demographics Query ITI-21
transaction. The resulting module has been integrated in
GNU Health, a popular open-source Hospital Information
System.

Keywords

HL7, Python, API, Interoperability

Correspondence to:

Vittorio Meloni
CRS4
Address: Loc. Piscina Manna, Edificio 1 - 09010 Pula (CA)
Email: vittorio.meloni@crs4.it

EJBI 2015; 11(2):en31–en40
recieved: October 30, 2014
accepted: January 9, 2015
published: January 20, 2015

1 Introduction

HL7 (Health Level 7) is a well-known and widely used
standard for the exchange, integration, sharing and re-
trieval of electronic health information. It supports clini-
cal practice and the management, delivery and evaluation
of health services. “Health Level Seven International” [1],
founded in 1987, is the main organization responsible for
HL7 development and maintenance. It defines several
standards, grouped into reference categories.

In this paper we describe HL7apy, a new Python pack-
age to manage HL7 v2.x messages. It uses Python natural
terseness to express and operate HL7 messages in a con-
cise manner. We expect it to be useful for fast protyping
of HL7-compliant software and potentially for the devel-
opment of full applications. As an example, Listing 1
contrasts the code required to create the part of a mes-
sage using HL7apy to the code required to perform the
same task with Java HAPI [2], currently the most popu-
lar library for HL7 messaging.

Python version

adt_a01 = Message (" ADT_A01 ")
adt_a01.msh.sending_application.hd_1 = \

"Sending App"
adt_a01.msh.sequence_number = "123"

adt_a01.pid.patient_name = "Doe^John"
adt_a01.pid.patient_identifier_list = "123456"

// Java version

ADT_A01 adt = new ADT_A01 ();
adt.initQuickstart ("ADT", "A01", "P");

MSH mshSegment = adt.getMSH ();
mshSegment.getSendingApplication ().
getNamespaceID ().setValue (" Sending App");

mshSegment.getSequenceNumber ().setValue ("123");

PID pid = adt.getPID ();
pid.getPatientName (0).getFamilyName ().

getSurname ().setValue ("Doe");
pid.getPatientName (0).getGivenName ().

setValue ("John");
pid.getPatientIdentifierList (0).getID().

setValue ("123456");

Listing 1: A comparison of the code needed to create the
same message from scratch using HAPI and HL7apy. The
message example and the Java code are taken from HAPI
official examples.

c©2015 EuroMISE s.r.o. EJBI – Volume 11 (2015), Issue 2

en32 Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages

1.1 HL7 Standards

The HL7 standard includes different versions that were
developed in different periods of time and with different
purposes:

• HL7 version 2 (HL7 v2) [3]: it is the older messag-
ing standard; it allows the exchange of clinical data
between systems and it is designed to support both
central and distributed patient care systems;

• HL7 version 3 (HL7 v3) [4]: created with a com-
pletely different philosophy from v2; it proposes a
new approach for data exchange, based on a Refer-
ence Information Model (RIM) and XML.

• HL7 FHIR (Fast Healthcare Interoperability
Resources) [5]: it has been developed with the aim
to simplify and accelerate HL7 adoption by being eas-
ily consumable but robust, and by using open Inter-
net standards where possible [6].

HL7 v2 is used worldwide to solve interoperability prob-
lems, although the “raw structure” of its messages is less
human readable and machine computable than v3, which
is XML-based; furthermore, v2 is still the reference ver-
sion of the IHE (Integrating Healthcare Enterprise) con-
sortium [7]. In part this is due to the fact that HL7 v3
(and the RIM in particular), in spite of ten years of de-
velopment, is still a work-in-progress undergoing intense
discussions on its design [8]. FHIR has been developed
to overcome these issues but it is a young standard and
it will need more years of development to be an effective
tool.

HL7apy focuses on HL7 v2 messaging standard.

1.2 HL7 Messaging Tools

The increasing diffusion of the HL7 v2 standard has
spurred the development of several software libraries
aimed at simplifying raw messages management. The
most popular open-source libraries available are the fol-
lowing.

• HAPI: a Java-based HL7 v2 library providing classes
for messages parsing, creation and validation. Both
parser and validator strictly follow the XML message
structure provided by the standard;

• NHapi [9]: a porting of HAPI for the Microsoft
.NET framework;

• python-hl7 [10]: a minimalistic Python HL7 v2 mes-
sages parsing library that implements basic function-
ality without validation. It includes the implementa-
tion of a simple MLLP1 (Minimal Lower Layer Pro-
tocol) client for sending messages.

1MLLP protocol is the minimalistic OSI-session layer framing
protocol used to send HL7 messages

In addition to software libraries, HL7 messaging function-
ality is also provided by data integration software, which
are integration gateways that support multiple data for-
mats and connectors. Two of the main tools are the fol-
lowing.

• Mirth Connect [11]: an open-source healthcare in-
tegration engine specifically designed for HL7 mes-
sage integration, written in Java. It provides all tools
to build integration channels able to connect a wide
range of data sources. It also provides tools for HL7
message parsing and validation;

• Interfaceware/Iguana [12]: a commercial software
for the exchange, transformation and parsing of HL7
messages, providing a mean to map message fields,
transform them and validate messages.

1.3 HL7apy

The diffusion of the Python programming language has
been increasing over the years [13], particularly in the sci-
entific domain [14]. The reasons for this popularity may
be attributable to the language being relatively easy to
learn and offering high programmer productivity. A re-
cent study [15] indicates that with scripting language, de-
signing and writing the program takes no more than half
as much time as writing it in C, C++ or Java and the
resulting program is only half as long, making it a good
choice for fast prototyping. Despite Python’s popularity,
it is missing a feature-complete library for HL7 messag-
ing. The aforementioned python-hl7 only implements ba-
sic features such as message parsing and ER7-encoding,
while lacking important functionality such as message val-
idation, custom separators support and structured parsing
according to HL7 messaging schemas or custom message
profiles.

Our motivation for the development of HL7apy comes
from all these factors. The library main functions are mes-
sages creation, parsing and validation; it supports HL7
key features like custom encoding characters, message pro-
files and Z-elements.

The rest of the paper is structured as follows. Section 2
describes the library architecture and its main functional-
ity; Section 3 summarizes the current features and briefly
describes a real use case HL7 module implemented with
HL7apy; Section 4 presents conclusions and planned fu-
ture developments.

2 Methods

This section introduces all the major components of
HL7apy.

Figure 1 shows the overall architecture of the library: it
is composed by two utilities scripts, that generate python
modules for every HL7 v2 minor version (XSD Parser)
and serialized files for message profiles usage (Message
Profiles Parser), and by the inner components that create

EJBI – Volume 11 (2015), Issue 2 c©2015 EuroMISE s.r.o.

Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages en33

and manage messages (Core classes), parse ER7-encoded
messages (Message Parser) and validate messages (Valida-
tor).

First we will introduce the utilities that are provided
with the library then, we will explain its inner compo-
nents.

2.1 Utilities

HL7apy includes utility scripts that are used to create
concise descriptions of HL7 messages structures, needed
by the rest of the library. These utilities are:

• XSD Parser

• Message Profiles Parser.

2.1.1 XSD Parser

The XSD Parser processes all the HL7 XML schema
files and generates a set of Python modules, one for each
HL7 v2 minor version.

The schemas are XML documents provided by HL7 In-
ternational organization itself. They contain the lists of
all elements (messages, segments, fields and datatypes)
and, for each one of those, they describe their children
with cardinality and datatype (the latter only in case of
fields and complex datatypes). These files can be used
for HL7 validation by third-party libraries and applica-
tions. As an example, Listing 2 shows a snippet of the
XML structure of the ADT_A01 message defined in the
ADT_A01.xsd file and its representation in HL7apy.

<!-- XSD Schema definitions -->

...
<xsd:complexType name=" ADT_A01.CONTENT">

<xsd:sequence >
<xsd:element ref="MSH" minOccurs ="1"

maxOccurs ="1"/>
<xsd:element ref="SFT" minOccurs ="0"

maxOccurs =" unbounded"/>
<xsd:element ref="EVN" minOccurs ="1"

maxOccurs ="1"/>
<xsd:element ref="PID" minOccurs ="1"

maxOccurs ="1"/>
...
<xsd:element ref=" ADT_A01.PROCEDURE"

minOccurs ="0" maxOccurs =" unbounded "/>
<xsd:element ref=" ADT_A01.INSURANCE"

minOccurs ="0" maxOccurs =" unbounded "/>
...

</xsd:sequence >
</xsd:complexType >
...
<xsd:complexType name=" ADT_A01.PROCEDURE.CONTENT

">
<xsd:sequence >

<xsd:element ref="PR1" minOccurs ="1"
maxOccurs ="1"/>

<xsd:element ref="ROL" minOccurs ="0"
maxOccurs =" unbounded"/>

</xsd:sequence >
</xsd:complexType >

<xsd:complexType name=" ADT_A01.INSURANCE.CONTENT
">

<xsd:sequence >
<xsd:element ref="IN1" minOccurs ="1"

maxOccurs ="1"/>
<xsd:element ref="IN2" minOccurs ="0"

maxOccurs ="1"/>
<xsd:element ref="IN3" minOccurs ="0"

maxOccurs =" unbounded"/>
<xsd:element ref="ROL" minOccurs ="0"

maxOccurs =" unbounded"/>
</xsd:sequence >

</xsd:complexType >

HL7apy representation

{" ADT_A01 ": (" sequence",
((" MSH", (1, 1)),
("SFT", (0, -1)),
("EVN", (1, 1)),
("PID", (1, 1)),
(" ADT_A01_PROCEDURE", (0, -1)),
(" ADT_A01_INSURANCE", (0, -1)))),

"ADT_A01_INSURANCE ": (" sequence",
((" IN1", (1, 1)),
("IN2", (0, 1)),
("IN3", (0, -1)),
("ROL", (0, -1)))),

"ADT_A01_PROCEDURE ": (" sequence",
((" PR1", (1, 1)),
("ROL", (0, -1)))),

}

Listing 2: A snippet of XSD schema for ADT_A01 message
and its HL7apy representation.

The code generated by the XSD parser is used by the
core classes and is the foundation of the entire library.

2.1.2 Message Profiles Parser

This utility compiles an XML message profile in a more
pythonic format. This strategy is similar to what is done
with the XSD Parser, though in this case the output are
not Python modules but cPickled2 serialized files that can
be dynamically loaded at runtime. The Message Profiles
Parser should be run every time an interoperability sce-
nario requires a particular profile.

The concept of Message Profile was introduced for the
first time in HL7 v2.5, which stated that it is “an un-
ambiguous specification of one or more standard HL7
messages that have been analyzed for a particular use
case” [16].

HL7apy can create message profiles by using the static
definition [16] of the message profile in XML format. The
parser takes as input a static definition in XML and pro-
duces a file containing the structure for every message it
defines. The outcomes are similar to the ones produced
by the XSD Parser with one main difference: the struc-
tures of the children are all included within the parent’s
and they are not expressed using a reference. The reason
for this is that every single element in the static defini-
tion can potentially specify a different cardinality, length

2cPickle is a Python module that supports serialization and de-
serialization of Python objects

c©2015 EuroMISE s.r.o. EJBI – Volume 11 (2015), Issue 2

en34 Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages

Figure 1: HL7apy overall architecture

or datatype than the same element of another message
in the profile. For instance, consider the two snippets in
Listing 3.

...
<Segment Name="PID" Usage="R" Min ="1" Max="1">

<Field Name=" Patient ID" Usage ="X" Min ="0"
Max ="*" Datatype ="CX" Length ="1904" >

...

...
<Segment Name="PID" Usage="R" Min ="1" Max="1">

<Field Name=" Patient ID" Usage ="X" Min ="0"
Max ="*" Datatype ="CX" Length ="20">

...

Listing 3: A snippet of a message profile with two definitions
of the Patiend ID field. The definitions specify different length
for the same field.

The two Patient ID field versions have different lengths,
so it is impossible to use one PID definition for all the
messages of the profile.

Listing 4 shows an example of the IHE PDQ message
profile and its HL7apy representation.

<!-- Message Profiles XML definition -->

...
<HL7v2xStaticDef MsgType ="RSP" EventType ="K22"

MsgStructID =" RSP_K21" EventDesc ="RSP - Get
person demographics response" Role=" Sender">

<MetaData Name ="" OrgName ="IHE" Version ="2.4"
Status ="DRAFT" Topics ="confsig -IHE -2.5-
static -RSP -K22 -null -RSP_K22 -2.3-DRAFT -
Sender"/>

<Segment Name="MSH" LongName =" Message Header"
Usage ="R" Min ="1" Max="1">

<Field Name="Field Separator" Usage="R" Min
="1" Max ="1" Datatype ="ST" Length ="1"
ItemNo ="00001" >

<Reference >2.15.9.1 </ Reference >
</Field >
<Field Name=" Encoding Characters" Usage="R"

Min ="1" Max ="1" Datatype ="ST" Length ="4"

ItemNo ="00002" >
<Reference >2.15.9.2 </ Reference >

</Field >
<Field Name=" Sending Application" Usage="R"

Min ="1" Max ="1" Datatype ="HD" Length
="180" Table ="0361" ItemNo ="00003" >

<Reference >2.15.9.3 </ Reference >
<Component Table ="0300" Name=" namespace ID

" Usage ="R" Datatype ="IS" Length ="20"/ >
<Component Name=" universal ID" Usage="C"

Datatype ="ST" Length ="199"/ >
<Component Name=" universal ID type" Usage

="C" Datatype ="ID" Length ="6" Table
="0301" />

</Field >
...

HL7apy representation

{" RSP_K21 ": ("mp",
"sequence",
"RSP_K21",
(("mp",

"sequence",
"MSH",
(("mp", "leaf", "MSH_1", (), (1, 1),

"Field", "ST", 1, None),
("mp", "leaf", "MSH_2", (), (1, 1),

"Field", "ST", 4, None),
("mp",
"sequence",
"MSH_3",
(("mp", "leaf", "HD_1", (), (1, 1),

"Component", "IS", 20, "HL70300 "),
("mp", "leaf", "HD_2", (), (0, 1),

"Component", "ST", 199, None),
("mp", "leaf", "HD_3", (), (0, 1),

"Component", "ID", 6, "HL70301 ")),
(1, 1),
"Field",
"HD",
180,
"HL70361 "),

...

Listing 4: A snippet of the IHE PDQ message profile and its
representation in HL7apy.

EJBI – Volume 11 (2015), Issue 2 c©2015 EuroMISE s.r.o.

Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages en35

2.2 Inner Components

In this section we detail the inner components of the
library, which are:

• Core Classes

• Validator

• Message Parser

2.2.1 Core Classes

The core classes offer an API to create HL7-compliant
messages, navigate their structure and manipulate HL7
elements, thanks to a tree-like representation of the ele-
ment relations (e.g., a Message can contain only instances
of Segments or Groups, a Group can contain Segment
instances only, etc.). These classes allow the developers
to express operations in a very compact form, as already
shown in Listing 1.

The library defines the following classes to represent all
the HL7 elements.

• Message

• Group

• Segment

• Field

• Component

• SubComponent

• Base datatype classes (e.g., ST, DT, FT, etc.)

Figure 2 illustrates the main classes and their relation-
ships. We can notice two other classes, apart from ones
listed above: the ElementFinder, used to search ele-
ment’s structure in the minor version’s modules, and the
ElementProxy, used during the elements’ navigation.

The next sections illustrate the main operations that
can be performed using the core classes.

Elements Instantiation. The developer can instan-
tiate HL7 elements simply by specifying their structure
and/or version (Listing 5).

from hl7apy.core import Message , Segment ,
SubComponent

adt_a01 = Message (" ADT_A01", version ="2.5")
ins = adt_a01.add_group (" ADT_A01_INSURANCE ")

pid = Segment ("PID")

s = SubComponent(datatype ="FT")
s.value = FT("some information ")

Listing 5: Examples of element instantiation.

Under the hood, the helper class ElementFinder is used
by the core classes to retrieve the element definitions de-
scribed in 2.1.1, thus enabling validation and traversal of
children.

As soon as the Message is instantiated, the MSH seg-
ment is automatically created and some of its required
fields are populated with default values (e.g., default sep-
arators for MSH-1 and MSH-2 fields).

Alternatively, one can specify a message profile as the
reference of the Message at instantiation (Listing 6).

mp = hl7apy.load_message_profile ("./ pdq")
m = Message (" RSP_K21", reference=mp[" RSP_K21 "])

Listing 6: Instantiation specifying a message profile.

It is also possible to create custom elements (Z-
elements), as long as they follow the correct naming con-
vention.

segment = Segment ("ZIN")
field = Field ("ZIN_1 ")

Listing 7: Instantiation of Z-elements.

To be more flexible, the library allows the creation of
HL7 elements without specifying their structure. In this
case, the message cannot be considered validated accord-
ing to the HL7 schemas. The validation process is de-
scribed in detail in Section 2.2.2. The Listing 8 shows
the instantiation of a custom field that is added to a PID
segment.

from hl7apy.core import Segment , Field

segment = Segment ("PID")
unkn_field = Field()
segment.add(unkn_field)

Listing 8: Instantiation of custom elements.

Element Navigation. Since the library exposes a
DOM-like API, the developer can easily access the chil-
dren of a given element by simply using their name, de-
scription or position.

from hl7apy.core import Message , Segment , Field

s = Segment ("PID")
s.value = "PID |||654321^^^123456||" \

"Family^Name ^^^^^"

by name , it refers to a Field instance
print s.pid_5

by description , it refers to a Field instance
print s.patient_name

by position , it refers to a Component instance
print s.pid_5.pid_5_1

c©2015 EuroMISE s.r.o. EJBI – Volume 11 (2015), Issue 2

en36 Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages

Figure 2: The architecture of HL7apy core. The main classes are shown

message = Message (" RSP_K21 ")

by description , recursively on the message
children
print message.msh.date_time_of_message.time

iterates over PID -5 children of the PID
segment
for name in s.pid_5:

print name

iterates over all the fields of the PID
segment
for child in s.children:

print child

its datatype is CX
org_5 = Field ("org_5")
org_5.value = "^^^^^^^^^ AG&&DEP"

it returns the tenth component of the field ,
it is the same as org_5.cx_10
print org_5.org_5_10

it returns the third subcomponent of the tenth
component of the field , it is the same as
org_5.cx_10.cwe_3
print org_5.org_5_10_3

Listing 9: Elements navigation. An element can be accessed
by name, description or position.

When accessing a child element list without specifying
an index, the library, by means of the ElementProxy class,
automatically returns the first child. Other child elements
can be accessed by specifying the appropriate index.

it is the same as s.pid_13 [0]
print s.pid_3.to_er7 ()

if it exists , it returns the second
instance of pid_13
print s.pid_3 [1]. to_er7 ()

Listing 10: Access to elements by index. If an index is
not specified the library returns the first child. Other child
elements can be retrieved by using the appropriate index.

Elements Population. For convenience, it is possible
to populate an element or its children by:

• assigning the ER7 representation,

• calling the dedicated parsing functions,

• copying another element instance,

• assigning the base datatype value (e.g., a string, a
number, etc.),

• assigning a base datatype instance.

m = Message (" ADT_A01", version ="2.5")

base datatype value (string)
m.msh.msh_3 = "GHH_ADT"

it will create to an instance of
DTM base datatype
m.msh.msh_7 = "20080115153000"

ER7 representation , MSH_9 is a complex
datatype of 3 components
m.msh.msh_9 = "ADT^A01^ADT_A01"

copy from another element
m.evn.evn_2 = m.msh.msh_7

parser function
m.msh.msh_9 = hl7apy.parser .\

parse_field ("ADT^A01^ADT_A01", name="MSH_9")

s = SubComponent(datatype ="IS")

EJBI – Volume 11 (2015), Issue 2 c©2015 EuroMISE s.r.o.

Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages en37

base datatype instance (IS)
s.value = IS("AAA")

Listing 11: Examples of elements population.

Element Encoding. The developer can generate the
ER7-encoded string of a core class instance using both
default or custom encoding characters (Listing 12). In
the case of Message class it is also possible to generate
the MLLP-encoded string.

from hl7apy.core import Message
from hl7apy.parser import parse_field

custom_chars = {
"FIELD": "!",
"COMPONENT ": "@",
"SUBCOMPONENT ": "%",
"REPETITION ": "~",
"ESCAPE ": "\$"

}

msh_9 = "ADT^A01^ADT_A01"
field = parse_field(msh_9)

it will use default encoding chars
print field.to_er7 ()

it will use custom encoding chars
defined above
print field.to_er7(encoding_chars=custom_chars)

m = Message(’RSP_K21 ’)
print repr(m.to_mllp ())

Listing 12: Elements encoding in ER7/MLLP form. The
developer can also specify custom encoding characters.

2.2.2 Validator

One of the most important features implemented in
HL7apy is the validation of messages, since it ensures their
compliance with the standard for the specific message type
and HL7 minor version.

In an ideal world every message would adhere to
the HL7 specification; however, real-life applications en-
counter messages that do not conform. Common is-
sues are for example fields with more components than
expected or messages with prohibited segments. For
this reason HL7apy implements two levels of validation:
STRICT and TOLERANT.

When a message is created using STRICT validation, the
library verifies the exact adherence of the message to its
message type. In particular, it checks that:

• all the expected elements are present;

• there are no unexpected or unknown elements;

• the cardinality of all elements is correct;

• the datatypes of the fields, components and subcom-
ponents are correct.

On the other hand, the TOLERANT validation level is more
permissive and allows some operations like:

• instantiating unknown elements;

• changing the default datatype of a field, component
or subcomponent;

• ignoring the cardinality of the elements (e.g., insert-
ing more identical elements than allowed or missing
a required element).

Naturally, some operations are not allowed in TOLERANT
mode either. For instance, it is not possible to insert a
PID-1 field into an SPM segment.

Validation is performed in two phases. The first one
checks that message creation and population do not vio-
late the rules of the chosen mode. As soon as an error
occurs, an exception is raised (e.g., when in STRICT mode
it is inserted an unexpected segment to a message or when
it is created an unknown element). The second phase must
be forced by the developer using the Validator class.

The Validator class performs a STRICT validation of an
Element. Its validate() method accepts an Element ob-
ject and validates it against its HL7 structure or against
a message profile, if specified in input. In particular it
verifies element’s cardinality, datatypes correctness and
emits warnings, which are minor errors that don’t invali-
date the message (i.e., HL7apy doesn’t raise an exception)
but should be fixed to guarantee its complete compliance.
Examples of errors in this category are:

• fields that exceed their maximum value;

• fields with a value not in their HL7 table.

Warnings and errors can be gathered together in a report
file by explicitly requesting it at validation time. This
feature can be especially useful to diagnose and resolve
errors in the interoperability testing phase. For instance,
the functionality can be used to verify the conformance of
the system to an IHE profile.

It is worth noting that the Validator checks for the
presence of issues that cannot be detected during the first
phase, in particular, the absence of required elements.
Thus it is wrong to consider a message completely valid
without using the Validator.

2.2.3 Message Parser

The Message Parser is the module that provides all
the functionality needed to parse an HL7 message en-
coded in the ER7 format. The parsing is started by the
parse_message function which takes an ER7 string as in-
put. The string is interpreted according to the encoding
characters specified in the MSH-1 and MSH-2 fields. The
parsing of sub-elements is delegated to purpose-specific
functions (e.g., parse_segment, parse_field and so on).
Every function generates an instance of the core classes
and attaches it to the correct parent object, resulting in

c©2015 EuroMISE s.r.o. EJBI – Volume 11 (2015), Issue 2

en38 Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages

Figure 3: PDQ transaction diagram. The PDQ Supplier shows the components included in the PDQ module
.

the tree structure of the message. The reference structure
of the message is obtained from the MSH-9 field.

The parser allows the caller to specify the desired vali-
dation level, the message profile to use, if necessary, and
the name of the report file the Validator will produce in
case of STRICT validation. It is also possible to specify a
flag that makes the parser create groups and assign the
segments as children of the group to which they belong,
as stated in the message schema.

All the parser functions are called by the core classes in
case of ER7 string assignment as shown in Listing 13.

m.msh.msh_9 = "ADT^A01^ADT_A01" # parse_field
m.evn = "EVN ||20080115153000|| AAA" \

"|AAA |20080114003000" # parse_segment
m.evn.evn_5.xcn_1 = "AAA" # parse_component

Listing 13: Assigment of string as elements’ value. The
parser functions are called by the core classes in case of string
assignment

3 Results

HL7apy supports the creation of HL7-compliant sys-
tems using the Python programming language. The li-
brary implements the following features.

• HL7 versions from 2.2 to 2.6 support

• Message Parsing

• Message Validation

• ER7 Encoding

• Custom Encoding Characters support

• Message Profile support

• Z-elements support

• Simple and Complex Datatype support

• HL7 tables support

With respect to the state of the art library (HAPI) we
do not support HL7 v2.1 and XML encoding.

3.1 Testing HL7apy Message Types
Coverage

In order to test HL7apy ability to parse different mes-
sage types, we applied to a random sample of 1000 mes-
sages from IHE Gazelle [17]. We only used messages vali-
dated by Gazelle (marked as passed). We removed 4 mes-
sages from the set since they were using non ASCII/UTF-
8 encoding characters, a feature currently not supported
by HL7apy. The resulting dataset distributes messages
within 12 different message types (e.g., ADT, QBP). Ta-
ble 1 reports the results of message parsing using the two
supported validation levels.

Table 1: HL7 messages coverage results. Abbreviations: v =
valid, i = invalid, e = errors.

tolerant strict
type tot v i e v i e
QBP 74 74 0 0 31 43 0
ADT 425 420 0 5 240 183 2
SIU 4 4 0 0 4 0 0
OUL 24 24 0 0 16 8 0
ACK 47 47 0 0 28 19 0
ORU 22 22 0 0 9 13 0
ORR 16 16 0 0 3 13 0
OML 106 106 0 0 69 37 0
ORL 47 47 0 0 34 13 0
ORM 171 171 0 0 6 165 0
RSP 58 58 0 0 20 38 0
QCN 2 2 0 0 2 0 0

The errors reported on the ADT row derive from the
fact that HL7apy does not currently support segment rep-
etition outside of a group. It is interesting to note that
some of these messages are rejected by STRICT before
failing. All other messages are parsed without exception
when setting the validation level to TOLERANT. The mes-
sages rejected by STRICT are correctly parsed when the
parser is configured with the appropriate message pro-
file. For instance, using the IHE ITI-21 message profile
results in the acceptance of all the PDQ request messages
(QBP^Q22^QBP_Q21).

EJBI – Volume 11 (2015), Issue 2 c©2015 EuroMISE s.r.o.

Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages en39

3.2 Use Case Implementation

As a significant example of a real-world problem, we
used HL7apy to implement the PDQ Supplier actor of the
IHE ITI-21 Patient Demographics Query (PDQ) trans-
action [18, 19]. PDQ allows clinical systems to query a
central patient demographics server with the purpose of
retrieving patients’ demographic information and it is one
of the most used IHE transactions. As shown in Figure 3,
the transaction involves two actors, PDQ Consumer and
Supplier, with two exchanged messages: QPB_Q21 for
requests and RSP_K21 for responses.

The PDQ Supplier receives query messages from one
or more consumers and returns demographic information
for all patients matching the query criteria. The module
includes a network MLLP service for sending and receiv-
ing HL7 messages. All the PDQ Supplier components are
shown in Figure 3. The module has been integrated in
GNU Health [20], a worldwide used open-source Hospital
Information System.

The module is structured as follows:

• the MLLP Server receives an HL7 PDQ request mes-
sage (QBP_Q21) from a PDQ Consumer and redi-
rects it to the Message Handler (MH);

• the MH parses and validates the message using
the specific profile, extracts the query parameters
and checks their compliance to the PDQ specifica-
tions. Query parameters are provided in one or more
QPD_3 field repetitions. Each repetition has two
components, the first indicating the parameter (e.g.,
name, surname, date of birth, etc) as coded by IHE,
and the second specifying the value. For example, if
the consumer wants to search all patients with name
‘John’ and surname ‘Smith’ the QPD_3 should be
filled as ‘@PID.5.2^John∼@PID.5.1.1^Smith’;

• once the parameters are extracted, they are sent to
the Data Access Object (DAO) which queries the de-
mographic database to get the corresponding patient
information and returns them to the MH;

• the MH creates the correct HL7 response message
(RSP_K21) and sends it to the MLLP Server that
forwards it to the PDQ Consumer.

HL7apy provides a standard MLLP server implementa-
tion through the MLLPServer class that needs to be spe-
cialized by providing the appropriate message handlers.
Listing 14 shows the usage of the class in the PDQmodule.
In this case only one handler is necessary (PDQHandler).

from hl7apy.mllp import MLLPServer
from .pdq_supplier import PDQHandler

s = MLLPServer(host=’localhost ’, port =6789,
handlers={’QBP_Q21 ’: PDQHandler })

s.serve_forever ()

Listing 14: Usage of the MLLPServer class provided by
HL7apy

When the server receives a QBP_Q21 message, for-
wards it to the PDQHandler class, whose implementation
is shown in Listing 15. This class is the core of the module:
it parses the request message, extracts the query parame-
ters and gets patients information using the DAO. Finally
it builds the response message and sends it back to the
consumer.

import datetime , uuid

from hl7apy.v2_5 import DTM
from hl7apy.utils import check_date
from hl7apy.mllp import

AbstractTransactionHandler
from hl7apy.parser import parse_message
from hl7apy.core import Message

from .dao import DAO
from .profiles import PDQ_REQ_MP , PDQ_RES_MP
from .parameters import PDQ_FIELD_NAMES

class PDQHandler(AbstractTransactionHandler):

REQ_MP , RES_MP = PDQ_REQ_MP , PDQ_RES_MP
FN = PDQ_FIELD_NAMES

def __init__(self , message):
self.dao = DAO()
msg = parse_message(message ,

message_profile=self.
REQ_MP)

super(PDQHandler , self).__init__(msg)

def _create_res(self , ack_code ,
query_ack_code , patients):

res = Message(’RSP_K21 ’,
reference=self.RES_MP)

r, q = res.msh , self.msg.msh
r.msh_5 , r.msh_6 = q.msh_3 , q.msh_4
res.msh.msh_5 = self.msg.msh.msh_3
res.msh.msh_6 = self.msg.msh.msh_4
r.msh_7.ts_1 = DTM(datetime.datetime.now())
r.msh_9 = ’RSP^K22^RSP_K21 ’
r.msh_10 = uuid.uuid4().hex

r, q = res.msa , self.msg.msh
r.msa_1 = ack_code
r.msa_2 = q.msh_10.msh_10_1

r, q = res.qak , self.msg.qpd
r.qak_1 = q.qpd_2
r.qak_2 = (’OK ’

if len(patients) > 0 else ’NF ’)
r.qak_4 = str(len(patients))

res.qpd = self.msg.qpd

g = res.add_group(’rsp_k21_query_response ’)
for i, p in enumerate(patients):

g.add_segment(’PID ’)
g.pid[i]. pid_1 = str(i)
g.pid[i]. pid_5 = "%s^%s" % (p[0], p[1])

return res

def _create_err(self , code , desc):
res = self._create_res(’AR’, ’AR ’, [])
res.ERR.ERR_1 , res.ERR.ERR_2 = code , desc
return res

def reply(self):

c©2015 EuroMISE s.r.o. EJBI – Volume 11 (2015), Issue 2

en40 Meloni V. et al. – HL7apy: a Python library to parse, create and handle HL7 v2.x messages

params = dict(
(self.FN[q.qip_1.value], q.qip_2.value)
for q in self.msg.qpd.qpd_3
if q.qip_1.value in self.FN)

if (’’ in params.values () or
(params.has_key(’DOB ’) and
not check_date(params.get(’DOB ’)))):

res = self._create_err(
"100", "Invalid params ")

else:
p = self.dao.get_data(params)
if len(p) > 0:

res = self._create_res(’AA’, ’OK ’, p)
else:

res = self._create_res(’AA’, ’NF ’, p)
return res.to_mllp ()

Listing 15: PDQHandler implementation

4 Conclusions and Future Work

In this paper we presented HL7apy, an HL7 v2 Python
library whose main goal is to provide a pythonic way for
handling HL7 messages.

The library is available at https://github.com/crs4/
hl7apy/tree/ihic2015 and it is released under the MIT
License (MIT). Currently, it supports Python version 2.7.

In the near future we plan to add support for XML
messages encoding, HL7 versions 2.7 and 2.8 and Python
3.

The website with the documentation can be reached at
http://hl7apy.org.

5 Acknowldgments

The authors are grateful to the GNU Health community
for their kind cooperation.

References

[1] HL7. HL7 Level Seven International. c2007-2014.
Available from http://www.hl7.org.

[2] HAPI. University Health Network; c2001-2014. cited
2014 October 15. Available from http://hl7api.
sourceforge.net.

[3] HL7 Version 2 Product Suite. HL7 Level
Seven International. c2007-2014. Updated 2014
Oct 10; cited 2014 Oct 20. Available from
http://www.hl7.org/implement/standards/
product_brief.cfm?product_id=185.

[4] HL7 Version 3 Product Suite. HL7 Level
Seven International. c2007-2014. Updated 2014
Oct 10; cited 2014 Oct 20. Available from
http://www.hl7.org/implement/standards/
product_brief.cfm?product_id=186.

[5] FHIR. HL7.org. c2011+. Updated 2014 Oct 20;
cited 2014 Oct 20. Available from http://hl7.org/
implement/standards/fhir/.

[6] D. Bender, K. Sartipi. HL7 FHIR: An Agile
and RESTful Approach to Healthcare Informa-
tion Exchange. Computer-Based Medical Systems
(CBMS), 2013 IEEE 26th International Symposium
on. 2013;326-331.

[7] IHE.net. IHE International; c2013. Available from
https//www.ihe.net

[8] B. Smith, W. Ceusters. HL7 RIM: an incoherent
standard. Studies in health technology and informat-
ics. 2006;124:133-8.

[9] NHAPI. Available from http://nhapi.
sourceforge.net.

[10] python-hl7. John Paulette; c2011 cited 2014 Octo-
ber 15. http://python-hl7.readthedocs.org/en/
latest/.

[11] Mirth. Quality System, Inc.; c1994-2014. Available
from http://www.mirthcorp.com.

[12] Iguana. Interfaceware Inc.; c2014. Available from
http://www.interfaceware.com/iguana.html.

[13] TIOBE Software. TIOBE Software BV; c2014.
Updated 2014 Oct 10; cited 2014 Oct 20
Available from http://www.tiobe.com/index.php/
paperinfo/tpci/Python.html.

[14] K. Millman, M. Aivazis. Python for Scientists and
Engineers. Computing in Science and Engineering.
2011;13:9–12.

[15] L. Prechelt. An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl. Computer.
2000;33;23-29.

[16] Health Level Seven, Inc. HL7 Messaging Standard
version 2.5 - An application protocol for electronic
standard exchange, 2003. Ann Arbor MI USA; 2003.

[17] Gazelle. IHE International; c2010-2014. Available
from http://gazelle.ihe.net

[18] IHE International, Inc. IHE IT Infrastructure
Technical Framework - Volume 1 ITITF − 1:
Integration Profiles. 2014. Available from
http://ihe.net/uploadedFiles/Documents/
ITI/IHE_ITI_TF_Vol1.pdf.

[19] IHE International, Inc. IHE IT Infrastructure
Technical Framework, Volume 2a ITITF − 2a:
Transactions Part A. 2014. Available from
http://www.ihe.net/uploadedFiles/Documents/
ITI/IHE_ITI_TF_Vol2a.pdf.

[20] GNU Health. GNU Solidario; c2011. Available from
http://health.gnu.org.

EJBI – Volume 11 (2015), Issue 2 c©2015 EuroMISE s.r.o.

https://github.com/crs4/hl7apy/tree/ihic2015
https://github.com/crs4/hl7apy/tree/ihic2015
http://hl7apy.org
http://www.hl7.org
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=186
http://hl7.org/implement/standards/fhir/
http://hl7.org/implement/standards/fhir/
https//www.ihe.net
http://nhapi.sourceforge.net
http://nhapi.sourceforge.net
http://python-hl7.readthedocs.org/en/latest/
http://python-hl7.readthedocs.org/en/latest/
http://www.mirthcorp.com
http://www.interfaceware.com/iguana.html
http://www.tiobe.com/index.php/paperinfo/tpci/Python.html
http://www.tiobe.com/index.php/paperinfo/tpci/Python.html
http://gazelle.ihe.net
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol1.pdf
http://ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol1.pdf
http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2a.pdf
http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2a.pdf
http://health.gnu.org

