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Abstract
Objectives: This study is aimed to achieve the rapid 
optimization of the input feature subset that satisfies 
the expert’s point of view and enhance the prediction 
performance of the early prediction model for fatty liver 
disease (FLD).

Methods: We explore a large-scale and high-dimension 
dataset coming from a northern Taipei Health Screening 
Center in Taiwan, and the dataset includes data of 
12,707 male and 10,601 female patients processed 
from around 500,000 records from year 2009 to 2016. 
We propose three eigenvector-based feature selections 
taking the Intersection of Union (IoU) and the Coverage 
to determine the sub-optimal subset of features with the 
highest IoU and the Coverage automatically, use various 
long short-term memory (LSTM) related classifiers for 
FLD prediction, and evaluate the model performance 
by the test accuracy and the Area Under the Receiver 
Operating Characteristic Curve (AUROC).

Results: Our eigenvector-based feature selection EFS-
TW has the highest IOU and the Coverage and the shortest 
total computing time. For comparison, the highest IOU, 
the Coverage, and computing time are 30.56%, 45.83% 
and 260 seconds for female, and that of a benchmark, 
sequential forward selection (SFS), are 9.09%, 16.67% 
and 380,350 seconds. The AUROC with LSTM, biLSTM, 
Gated Recurrent Unit (GRU), Stack-LSTM, Stack-biLSTM 
are 0.85, 0.86, 0.86, 0.86 and 0.87 for male, and all 0.9 for 
female, respectively.

Conclusion: Our method explores a large-scale and 
high-dimension FLD dataset, implements three efficient 
and automatic eigenvector-based feature selections, 
and develops the model for early prediction of FLD 
efficiently.
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Introduction

Types of FLD, Dataset Retrieval Status and Literature 
Review of FLD Prediction

Prior research on machine learning for early disease prediction 
has focused on diabetes, FLD, hypotension, and other metabolic 
syndromes [1]. Although FLD has no notable symptoms, it 
may progress to severe liver diseases. If not treated within three 
years, the possibility for FLD to develop into nonalcoholic 
steatohepatitis (NASH) and liver cirrhosis is 25% and 10-25% 
[1,2]. Moreover, FLD increases the prevalence of diabetes, 
metabolic syndrome, and obesity, creating enormous medical 
and economic burdens for society. It raises the urgent need for 

early and precise prediction of FLD, followed by personalized 
treatment and recommendations.

Typically, FLD is classified into two types according to its cause: 
alcohol-related fatty liver disease (AFLD) and nonalcoholic fatty 
liver disease (NAFLD). AFLD is commonly caused by excessive 
alcohol consumption, whereas NAFLD is due to other more 
complex factors. Although most prior research has focused on 
NAFLD prediction rather than AFLD [3-7], there is no inherent 
reason to conduct separate prediction processes. The preceding 
research focus on NAFLD is partly due to the datasets being 
insufficiently large to predict both types of FLD.

Besides, as shown in Table 1, dataset used in this study is much 
larger and covers a much larger period, and previous studies [7-
10] have relied on techniques such as leave-one-out (LOO) cross-
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validation to accommodate these small datasets with sample 
sizes and short periods to avoid overfitting [3-9]. They conducted 
feature selection through human intervention [10-14] rather 
than by automation that is not a common practice in machine 
learning. The use of such limited datasets raises the likelihood 
that the identified models are at risk of overfitting, and their short 
duration makes it difficult to perform the prediction possible in 
this study using an eight-year dataset.

Recently, machine learning models have been used extensively in 
medicine and healthcare for fixed-length input data. In contrast, 
long short-term memory (LSTM) -related models can process the 
variable-length data of large-scale and high-dimension dataset 
resulted from different patient‘s irregular examining periods 
for future prediction, although time-consuming. Accordingly, 
the contribution of this paper is that we explore a large-scale 
dataset with high dimensionality for FLD prediction, propose and 
implement the efficient feature selections to select features close 
to expert-selected ones automatically and rapidly, and develop 
the prediction models using various LSTM-related classifiers 
with fixed-interval timestamps for FLD prediction.

Techniques for Dimensionality Reduction

Concept of principal component analysis: Principal 
Component Analysis (PCA) is based on K-L transformation, 
and it can be used to visualize the structure of the original data 
on a lower dimensional space (in general, 2 or 3). The basic 
approach is to compute the eigenvectors of the covariance matrix 
computed from the original data corresponding to the few largest 
eigenvalues, and the processes are shown in formulas 1 to 4. 
The training dataset ( )Ni aaaa ,...,,...,,A 21=  represents a Nn×
data matrix, where each ia  is a normalized feature vector of 
dimension n for a sample, and N is the number of samples. PCA 
can be considered as a linear transformation from the original 
vectors of dataset to a projection feature vector as

AWY T=                                                                                  (1)

 
ii See =λ                     (2)

 
∑
=

−−=
N

i
ii xx

1

T))((S µµ , ∑
=

=
N

i
ix

N 1

1µ                (3)

Where Y is a Nm∗  feature vector matrix, m is the dimension 

                         Item for Comparison

Authors and Title
Sample Size Date Time 

Duration
Feature 
Selection

FLD 
Types

Gender 
Types

Prediction 
of Future 

Health

Source of 
Dataset 

Birjandi et al., ‘Prediction and 
Diagnosis of Non-Alcoholic Fatty 

Liver Disease (NAFLD) and 
Identification of Its Associated Factors 
Using the Classification Tree Method’, 

2016

1,700 2012 Yes NAFLD   Male/ 
Female No Health 

Houses

Raika et al., ‘Prediction of Non-
alcoholic Fatty Liver Disease Via a 
Novel Panel of Serum Adipokines’, 

2016

<100 2012∼2014 No NAFLD Male No Hospital

Yip et al., ’Laboratory parameter-based 
machine learning model for excluding 

non-alcoholic fatty liver disease 
(NAFLD) in the general population’, 

2017

<1,000 2015 Yes NAFLD Male No Hospital

Islam et al., ‘Applications of Machine 
Learning in Fatty Live Disease 

Prediction’, 2018
<1,000 2012∼2013 Yes NAFLD/ 

AFLD
Male/ 

Female No Hospital

Ma et al., ‘Application of Machine 
Learning Techniques for Clinical 
Predictive Modelling: A Cross-

Sectional Study on Non-alcoholic Fatty 
Liver Disease in China’, 2018

<11,000 2010 Yes NAFLD Male/ 
Female No Hospital

Wu et al., ‘Prediction of fatty liver 
disease using machine learning 

algorithms’, 2019
<600 2009 No NAFLD/ 

AFLD Male No Hospital

Present Task >150,000 2009∼2016 Yes NAFLD/ 
AFLD

Male/ 
Female Yes

Health 
Screening 

Center

Table 1: Comparison of prior research and present study for FLD prediction.
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of the feature vector, and transformation matrix W is a mn∗  
transformation matrix whose columns are the eigenvectors 
corresponding to the m largest eigenvalues of the total scatter matrix 
S. Also, the mean dataset of all samples is shown in formula 3.

After applying the linear transformation WT, the scatter of the 
transformed feature vector { }Nyyy ,...,, 21  is WTSW. In the PCA, 
the projection Wopt is chosen to maximize the determinant of the 
total scatter matrix of the projected samples as
 m}1 |{w|SWW|maxargW T

Wopt ≤≤== ii                             (4)

Where wi is the set of n-dimensional eigenvectors of S 
corresponding to m << n largest eigenvalues. That means, the 
input vector in an n-dimensional space is reduced to a feature 
vector in an m-dimensional subspace.

Concept of linear discriminant analysis

Linear discriminant analysis (LDA) uses class specific 
information which best discriminates among classes. LDA 
produces an optimal linear discriminant function which maps the 
input data into the classification space, the class identification of 
this sample is decided based on some metrics such as Euclidean 
distance, and it selects W such that the ratio of the between-class 
scatter matrix SB and the within-class scatter Sw of the training 
dataset is maximized. The processes are shown in formulas 5 to 9.

Assuming that Sw is non-singular, the basis vectors in W 
correspond to the first m eigenvectors with the largest eigenvalues 
of B
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Where Ni is the number of training samples in class i, c is the 
number of distinct classes, and iµ is the mean vector of samples 
belonging to class i. The optimal projection Wopt is chosen as 
follows.
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Where wi is the set of generalized eigenvectors of SB and SW 
corresponding to the largest generalized engienvalues of iλ , 
such that

iii wSwS WB λ= , where },...,2,1{ mi∈                                 (9)

Applications using the combination of PCA and LDA: The 
combination of PCA and LDA has reached to be state-of-the-
art in the image recognition field, especially the prediction of 
face, gender, face expression recognition, electromyography 
(EMG) recognition in bionic mechanical control, and banknote 
discrimination [15-22]. The superior performance of this 
combination of PCA and LDA in previous studies leads us to use 
it for feature reduction to our numerical, heterogeneous large-

scale and high-dimension dataset of FLD that consists of lab tests 
and questionnaires.

The projecting matrix Γ is the combination of PCA and LDA 
space that can be calculated by formula 10 listed below.

Γ = T
pca

T
lda ΓΓ *                  (10)

Where in },...,,{ 21 kpca ΓΓΓ=Γ  is the projecting matrix of the PCA 
space, and )SS( B

1
W ∗=Γ −eiglda  (in applications, SW is in general 

degenerate and its inverse does not exist) is the eigenvector 
corresponding to the eigenvalues, and wherein SW is the inverse 
matrix of within-class scatter matrix and SB is the between-class 
scatter matrix.

Types of Feature Selection

Feature selection is an essential step in machine learning that 
identify a feature subset to construct a better model requiring less 
computing time for training and testing. Frequently used feature 
selections involve the wrapper-based, the filter-based, and the 
embedded methods. Wrapper-based methods use a classifier to score 
the feature subsets, i.e., it selects features based on classification 
accuracy, but time-consuming. Filter-based methods use a proxy 
measure instead of accuracy to score a feature subset, which is 
efficient but does not always produce a good model since it seldom 
relates to classification accuracy [23]. Embedded methods perform 
feature selection as part of the model construction process, which 
tends to be one of two types of mentioned methods in accuracy and 
computational complexity [24-26].

Conventional but accurate wrapper-based method, SFS [27], aka 
Whitney’s method in Pattern Recognition (PR), can test the relevance 
of signals or measure by considering the relationships between them. 
It starts with an empty set and selects the first best feature among m 
features, i.e., the one with the highest recognition rate, available at 
that moment.  Then, it selects one among m-1 features to combine 
the first feature with the jointly highest recognition rate. Liu et al. 
[28] conclude that SFS is time-consuming and inefficient when 
processing a large-scale and high-dimension dataset.

Features Suggested by Experts for FLD Prediction

There are many risk factors related to FLD but not all of preceding 
research adopts the feature selection automatically. For example, 
Wu et al. [7] manually selected only ten features from the collected 
data in a manner of human intervention. In contrast, in this study 
the experts have suggested at least 24 features included in lab 
tests and questionnaires as a comparison basis for preventing the 
human intervention. Herein we only show some essential features 
in lab test in Table 2, and those included in questionnaire, such 
as ‚The ratio of GOT/GPT‘, ‚How many servings of bread do 
you eat?‘, ‚The metabolic equivalent for exercise per week‘, and 
‚Have you smoke or not?‘, are not shown for brevity. 

Applications of LSTM-Related Classifiers

Conventional Recurrent Neural Networking (RNN) is the first 
architecture proposed to handle the concept of timestamp, but 
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it can only remember the information from the previous time. 
LSTM is a kind of RNNs but it can learn long-term dependencies 
or more extended period historical information because of 
a memory function. Recent studies [29-34] show various 
applications in prediction using LSTM-based framework or 
model, and the superior performance of LSTM in them leads us 
to use it for our FLD prediction.

Methods

Flowchart of FLD Prediction

This paper explores the steps of data preprocessing and cleaning, 
performing feature selection, and performing the prediction 
of FLD using LSTM related classifiers. We show the entire 
workflow for FLD prediction and those steps in Figures 1 to 3, 
and describe the content in detail in the remains of this chapter.

Data Preprocessing and Cleaning

We conduct the data preprocessing and cleaning procedure 
including the steps of handling missing value, performing 
interpolation, feature options simplification, feature conversion, 
and useless feature deletion, and handling gender dependency 
features.

To prepare the features set for LSTM, we perform interpolation 
to create monthly features between any two health exams for each 
subject. For numeric lab test features, we use spline interpolation 
with‚ piecewise cubic‘, and for questionnaire features with 
categorical values of integers, we use linear interpolation and 
then perform round-off to the nearest labels as shown in Figure 
2. In feature options simplification, some multiple options for 

questionnaire features will be changed to binary options before 
model training since our model is the binary prediction.

To simplify the questionnaires‘ complexity, we convert the 
‚grams of alcohol‘ comes from different questionnaires like ‚kind 
of drink‘, ‚habit of drink‘, ‚drink or not‘, and ‚alcohol density‘. 
Similarly, the ‚weekly exercise metabolic equivalent‘ comes from 
questionnaires of ‚kind of sport‘, ‚frequency of sport‘, and ‚time 
for sport‘. Besides, to the useless feature, we drop the features 
that are unrelated to FLD but other diseases such as ‚Cervical 
cancer‘, ‚Chinese medicine‘, and so on.

Automatic eigenvector-based Feature Selections

To evaluate the similarity or degree of consistency between the 
features selected from our methods and those suggested by experts 
and to strike a balance between efficiency and effectiveness, it 
performs the feature selections and compares the result by the 
measures, intersection of union (IOU) and the Coverage in this 
study. As shown in Figures 3, to 5, we use different eigenvector-
based feature selections in a technique such as bagging or voting 
that has parallel style and different classifiers, and it determines 
the sub-optimal subset of features with the highest value of IoU 
and Coverage automatically and unionizes the groups of features 
with the same value of Coverage when they have same value of 
IoU.

The formula and definition of IoU and Coverage are listed as 
follows.

IoU(S1, S2)=                   (11)

Coverage (S1, S2) =                  (12)

                              Statistics
          Features

Males (n=88,056)
(NFLD, FLD) = (34,885, 53,171)

Females (n=72,564)
(NFLD, FLD) = (48,574, 23,990)

Mean Std. Mean Std.
Age 44.15 12.39 45.08 12.87
BMI

(Body Mass Index) 24.63 3.38 22.39 3.49

CH 3.89 0.93 3.11 0.80
CHOL (mg/dl) 196.69 34.58 194.55 34.63

Drink Alc. gram 
(Alcohol per Gram) 12.82 43.48 1.94 16.13

FAT (Body Fat) 24.13 5.50 29.71 6.80
FG (mg/dl) 104.65 20.55 99.31 18.33

GGR 0.87 0.31 1.15 0.35
GPT (IU/L) 35.39 30.23 21.75 20.03

HDLC (mg/dl) 52.44 11.65 65.15 15.05
LDLC (mg/dl) 120.34 31.03 111.09 30.74

Metaequi 14.58 22.80 12.84 19.26
TG (mg/dl) 136.60 108.90 93.84 65.84
WC (cm) 83.81 8.77 72.19 8.13

WHR 0.87 0.06 0.77 0.06
WEI (kg) 71.83 11.33 55.81 8.97

Table 2: Important features and number of samples in FLD dataset.
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Figure 1: Flowchart of proposed FLD prediction.

Figure 2: Interpolation for the questionnaire features between any two medical checkups.

Figure 3: Flowcharts of FLD prediction with proposed eigenvector-based feature selections for different classifiers.

Where the set S1 consists of the features suggested by expert, 
and the set S2 consists of the features selected by SFS or our 
method. Both similarity indices range from 0 to 1, and a higher 
value indicates a higher similarity.

Eigenvector-based Feature Selection with Features 
Determined by Threshold and Sliding Window (EFS-TW): 
Because the contribution, importance, and relationship among 
features in the higher dimension will become insignificant at the 

lower dimension, we investigate that of original features by our 
methods. In our EFS-TW, the steps of performing PCA and then 
LDA to obtain eigenvectors till symbol ‘A’ are shown in Figure 
4, and the steps of determining the contribution or the importance 
of original features by taking the sum of the absolute value of all 
eigenvector’s value till symbol ‘B’, ‘C’, and ‘D’ are shown in 
Figure 5 and formula 11.

Consequently, as shown in Figure 6, the process marked in 
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symbol ‚B‘ of Figure 5 involves the essential steps of EFS-
TW: removing the features which sum mentioned lower than a 
threshold derived from the measure such as a mean value to form 
a sub-optimal subset of features as shown in formulas 14 and 15, 
and determining a global sub-optimal subset of features shown in 
formula 16 with highest IoU and Coverage by a sliding window 
with the width 24 which is equal to the numbers of features 
recommended by expert.

 The essential formulas of EFS-TW are listed as follows.

∑
=

=
l

j
iji eC

1
, || , },...,2,1{ ni∈               (13)
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where in i is the ith featrute related to the original feature, j is 
the jth vector corrersponding to the PCA and LDA space, l is 
the number of dimension projected to the LDA space, and n is 
the size of feature set. The feature which value of contribution 
greater than the threshold will be reserved as shown in formula 

15, and wherein expF is the feature set suggested by expert.

Eigenvector-based Feature Selection with Features 
Determined by Threshold, Ranking and Sliding Window 
(EFS-TRW): For brevity, the difference between EFS-TW and 
EFS-TRW marked in symbol ‘C’ of Figure 5 and shown in Figure 
7 is that EFS-TRW ranks the remaining features in descending 
order (shown in formula 17) before determining a global sub-
optimal subset of features by a sliding window (shown in formula 
18).

The essential formulas of EFS-TRW are listed as follows.

)Set( thresholdrank rankSet =                 (17)

)),((maxarg exp i
SetF

opt FFIoUSubset
ranki∈

=                   (18)

Eigenvector-based Feature Selection with Features 
Determined by Ranking and Sliding Window (EFS- RW): 
For brevity, the difference between EFS-TW and EFS-RW 
marked in symbol ‘D’ of Figure 5 and shown in Figure 8 is that 
EFS-RW omits the step of removing the features by the threshold 
for remaining the relative important features. Consequently, the 
steps of ranking features in a descending order and finding the 
global sub-optimal subset are shown in formulas 20 and 21.

Figure 4: Steps of performing PCA and then LDA.

Figure 5: Step of determining the contribution or importance of features.
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The essential formulas of EFS-RW are listed as follows, and 
wherin Ci in formula 19 is the same as described in formula 
13.

n}}{1,2,...,i|{Setfeature ∈= iC                  (19)

)Set( featurerankSetrank =                 (20)

)),((maxarg exp i
SetF

opt FFIoUSubset
ranki∈

=                    (21)

Model Training and Evaluation

Because of the superior performance of LSTM mentioned above, 
we use LSTM-related classifiers, LSTM [35], biLSTM [36], 
Stack-LSTM [37], Stack-biLSTM [38], and GRU, with important 
historical information that includes lab tests and questionnaires 
as inputs to predict whether the patient will be diagnosed with 
FLD in the specified future time or not. Considering the input 
sequence for LSTM is variable, we set the length to fixed 12 
months. Moreover, we evaluate their performance by comparing 
the result of AUROC, precision, recall, F1 score, accuracy, 
computing time and error reduction.

Dataset used in this Study

As shown in Table 2, this study uses the FLD dataset [39] 
collected from a health screening center in Taipei from 2009 to 
2016. Our goal is to predict whether a given person has FLD or 
not at specific time in the future, and this big dataset consists of 
160,620 unique samples (88,056 males and 72,546 females), with 
446 features (or biodata) in total (289 from questionnaires and 157 
from lab tests). Besides, to show the number of patients in the eight 
years, we list the times of males and females examined per year that 
recorded in FLD dataset in Figures 9 and 10. Herein, we can see a big 
difference between 2013 and 2014, likely due to the implementation 
of Taiwan’s Personal Data Protection Act, which required medical 
patients have the right to opt-in to participate in medical research or 
not. Moreover, for males the visit count is reduced from 11,184 to 
6,770 between 2013 and 2014, and the decrease rate is 60.53%. On 
the other hand, for females the visit count is reduced from 8,896 to 
4,958, and the decrease rate is 55.73%.

Also, we briefly explain the content shown in Figure 9. The 
bottom part is the statistical result of the top one that classified 

Figure 6: Steps of removing relatively unimportant feature and determing the global sub-optimal subset of features of EFS-T.W.

Figure 7: Steps of removing relatively unimportant feature, ranking and determing the global sub-optimal subset of features of 
EFS-TRW.

Figure 8: Steps of ranking and determing the global sub-optimal subset of features of EFS-RW.
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Figure 9: Times for males (blue) and females (red) examined per year that recorded in FLD dataset.

Figure 10: Ratio of missing values for all features and for the top 20 features in the FLD dataset.
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into the number of NFLD and FLD, and the classification is 
beneficial for calculating the respective ratio. Besides, the sizes 
of NFLD and FLD are 34,885 and 53,171 for males, and the ratio 
of NFLD/FLD is 0.66, then 48,574 and 23,990 for females, and 
the ratio of NFLD/FLD is 2.02. Meanwhile the ratios of NFLD/
FLD from 2009 to 2016 are {0.69, 0.67, 0.63, 0.63, 0.66, 0.68, 
0.64, and 0.63} for males and {2.09, 2.16, 2.0, 1.93, 1.94, 2.1, 
1.89, 1.96} for females.

Regarding the properties of our dataset, the characteristic of the 
dataset is its high ratio of missing values. Missing values are 
common in medical or healthcare datasets, and our dataset is no 
exception. As shown in Figure 10, it plots the ratio of missing 
values for all features and the top 20 features. Since features 
with missing value ratio 90% or higher are hard to impute, we 
eliminate these 17 features, leaving 252 features for further 
processing. In the preprocessing step, we impute missing values 
in our dataset using the mean for numerical features and the 
mode for questionnaire features. More complicated methods 
such as MICE (Multivariate Imputation by Chained Equations) 
[40] perform the imputation as well. Besides, Table 2 shows the 
important features in the lab test for males and females.

Also, some features, such as TG, are strong indicators of FLD that 
worth paying attention. To observe TG progression over eight 
years, we plot the yearly average TG for FLD and NFLD, broken 
down by males, females, and overall, respectively in Figure 11. 
Herein, we divide those six curves into two groups of FLD and 
NFLD, and TG for FLD is constantly higher than that of NFLD. 
Within the same group of FLD or NFLD, males usually have a 
higher TG than females. Moreover, those three curves belonging 
to group FLD have higher variance than the other three curves 

belonging to group NFLD, indicating that FLD patients might 
have a more dramatic TG progression.

Again, we convert several features of the FLD dataset from 
different quantities due to questionnaire versions‘ inconsistencies 
over the past years. For instance, ‚grams of alcohol‘ represents 
average grams of weekly alcohol intake [41,42]. To derive this 
feature, we need to combine some questionnaire items related 
to drinking from the FLD dataset. Similarly, we combine some 
questionnaire items related to exercise from the FLD dataset to 
derive ‚weekly exercise metabolic equivalent‘.

Results and Discussions

Environment and Specification

We conduct our experiments on a 64 bits Windows 10 server, 
with an Intel Xeon® Silver 4116 CPU @ 2.10GHz, two 
NVIDIA Quadro GV100 GPU, 256GB RAM, 1TB hard disk, 
and Matlab R2020a (9.8.0.1417392). Besides, we construct all 
the models in this study based on the FLD dataset. Each of our 
experiments seeks to find something meaningful in the dataset, 
so we partition the dataset into subsets for training, validation, 
and test for different experiments. We perform necessary dataset 
preprocessing include missing value imputation and feature-
wise z-normalization as explained in the previous section before 
using it for modeling. Here we show the specification for feature 
selection of male for example as follows.

• Dataset: Male subjects in the FLD dataset.

• Classifier: LSTM.

Figure 11: Progression of yearly average TG over 8 years.
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• Feature selection: LSTM with 3-fold cross validation to 
select the most important 24 features.

• Ratio of training and test: total size of the input/output pairs 
for training LSTM with 24 features is 469,159. We divide 
the input-output pairs for prediction into 70% for the training 
(of which 10% is used for validation) and 30% for the test, 
all with stratified partitioning.

Data Preprocessing and Cleaning

As shown in Figure 12, the patient are not always visit at regular 
intervals, and for instance we extract four input-output pairs for 
prediction from the given visit patterns and discard those patients 
with only a single visit. When the visit pattern denoted is [v1, v2, v3, 
v4, v5], the extracted four input/output pairs for training LSTM are 
{v1 ⇒ v2}, {v1, v2 ⇒ v3}, {v1, v2, v3 ⇒ v4}, and {v1, v2, v3, v4 
⇒ v5}. For both input and output, we need to perform interpolation 
to create the fixed-interval data for LSTM. For instance, as shown in 
Figure 13, we interpolate the input to a fixed interval of one month 
and the output to twelve months from the nearest input.

In this experiment, we prepare the input/output pairs used to 
train LSTM with 24 features in the dataset as follows. It reduces 
the total number of samples from 88,056 to 12,707 male and 
72,564 to 10,601 female since we remove those patients with 
only a single visit from the dataset. We interpolate data between 
two consecutive visits to its monthly values from the historical 
data for each patient. For a specific visit, we use the past twelve 
months of the interpolated data as the input of LSTM and the 
interpolated output which twelve months after the nearest input 
as the output of LSTM. The input-output data pairs were collected 
using sliding windows with a slide of one month. Herein, we list 
the statistics of the average or standard length of patient sequence 
input for LSTM with males and females in Table 3.

Feature Sets Derived and Measurement

To investigate the effectiveness of features derived by our 
methods, we conducted three eigenvector-based feature selections 

and find the global sub-optimal subset of features with the highest 
IoU and Coverage, and evaluate those features selected by our 
method and SFS with that of expert suggested features for FLD. 
To simplify, the features selected are partial shown in Table 4 
with the brief explanation, and the matched features selected 
were marked with the symbol ‘*’. 

As shown in Table 5, we list the value of IoU, Coverage, number 
of eigenvector, and feature selected of our method, and the 
method with the highest value of metrics and the global sub-
optimal feature set is EFS-TW. Also, in Table 6, the results 
by performing SFS are similar to expert-suggested features. 
However, SFS achieves these marginal improvements at the cost 
of computing time. In contrast, our EFS-TW with the highest value 
of the IoU, the Coverage, and classification accuracy, {23.68%, 
37.5%, 78.35%} for males when number of the eigenvector is 50, 
and {30.56%, 40.83%, 83.65%} for females when number of the 
eigenvector is 130, has around only 263 and 260 seconds of the 
whole computing time that far less than that of expert’s and SFS.

Performance of Various Classifiers

We compare the performance of classifiers LSTM, biLSTM, 
GRU, Stack-LSTM, and Stack-biLSTM to two baseline models, 
depict the accuracy in Figure 14, and list the values of various 
metrics in Table 6. Here we give a brief description of Baseline 1 
and Baseline 2 as follows.

•   Baseline 1: This always outputs the class with a larger 
percentage in the ground truth. In the case of the FLD dataset, the 
output is always NFLD.

•   Baseline 2: This is a simple inference model that always 
outputs the class of the previous physical examination. In other 
words, it determines the prediction based on the ground truth of 
the physical examination.

As shown in Figure 14 and Table 6, compared with the Baseline 
2, classifier biLSTM achieves the top one of test accuracy 
78.35% (12.63% error reduction) for males. Classifier Stack-
biLSTM reaches the top one of test accuracy 83.65% (37.55% 

Figure 12: A typical visit pattern and the selected input/output pairs for training LSTM.

Figure 13: The process of creating fixed-interval data for LSTM.
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Male Female
No. of unique patients 12,707 10,601

No. of samples through interpolation 152,484 127,212
Mean of patient sequence length 12 12
STD of patient sequence length 0 0
Min. of patient sequence length 12 12
Max. of patient sequence length 12 12

Table 3:  Statistics of average or standard length of patient sequence input for LSTM.

                                      Feature Selection

Features and Explanation
Literature SFS

Eigenvector-based Feature 
Selection with the Highest 

IoU and Coverage

Features Explanation Suggested 
by experts

Selected 
by SFS Match

Selected 
by EFS-

TW
Match

age Age * *
bloodtype Blood type *

bmd Bone mineral density *
bmi (kg/m2) Body mass index * * * * *

cc (cm) Chest circumference *
cci (cm) Chest circumference during inspiration *

cea (ng/ml) Carcinoembryonic antigen *
ch The ratio of CHOL/HDLC * * *

chol (mg/dl) Total cholesterol *
drinkalcgram (g) Alcohol per gram *

Drink year How many years have you been drinking? *
ery (106/µl) Red blood cells *

fat (g) Body fat * * * * *
fe (μg/dl) Calcium Phosphorus Iron (iron) *
fg (mg/dl) Diabetes mellitus fasting glucose * * * * *

food18 How many servings of bread do you eat? *
food19 Do you add jam or honey to your food? *

food20 Do you add sugar to your coffee, tea, drink 
colas, fruit juices or other beverages? *

food21 How many servings of your food intake are 
fried in oil? *

ggr The ratio of GOT/GPT * * *
ggt (IU/L) Gamma-glutamyl transferase * *
glo (g/dl) Globulin *

got (IU/L) Serum glutamic-oxaloacetic transaminase 
(sGOT) *

gpt (IU/L) Serum glutamic-pyruvic transaminase 
(sGPT) * * *

hc (cm) Hip circumference *
hdlc (mg/dl) High density lipoprotein cholesterol * * *

hei (cm) Height *
ldlc (mg/dl) Low density lipoprotein cholesterol * * *
leu (103/ml) White blood cells *

mcv (fl) Mean corpuscular volume *

Table 4: Features suggested and selected for FLD prediction.
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mdrug10 Steroids *

mdrug8 Medicine for asthma *

metaequi The metabolic equivalent for exercise per 
week *

n (%) Neutrophils *

ob Occult Blood *

psick17 Have you ever suffered from the following 
diseases? Hepatitis *

psick16 Have you ever suffered from the following 
diseases? Peptic ulcer *

psick20 Have you ever suffered from the following 
diseases? Kidney stone *

psick21 Have you ever suffered from the following 
diseases? Gout *

relate33b In the last three months, have you lost 
weight by more than 4kg? *

rr (breaths/min) Respiration Rate *

rsick10 Relatives (grandparents, parents, siblings, 
and children) disease? Diabetes *

sdephi (/HPF) Sediment epithelial cells high *

sdeplo (/HPF) Sediment Epithelial Cells Low *

Smoke or not Have you smoked or not? *

tg (mg/dl) Triglyceride * * * * *

tsh (µIU/ml) Thyroid stimulating hormone *

ua (mg/dl) Uric acid *

vanl Visual acuity (naked left eye) *

wc (cm) Waist circumference * * * * *

wei (kg) Weight * * * * *

whr Waist-to-hip ratio * * *

           Statistics    
 

Methods
Gender IoU Coverage No. of 

Eigenvector Feature Selected

EFS-TW

Males 23.68 37.50 50 {'dm_fg', 'g_bmi', 'g_fat', 'g_wc', 'g_wei', 'g_whr', 'l_tg', 'lf_gpt', 
'mdrug10'}

Females 30.56 45.83 130
{'dm_fg', 'g_bmi', 'g_fat', 'g_wc', 'g_wei', 'g_whr', 'l_ch', 'l_chol', 

'l_tg',
'lf_gpt', 'mdrug10'}

EFS-TRW
Males 23.68 37.50 90

{'dm_fg', 'drinkalcgram', 'g_bmi', 'g_fat', 'g_wc', 'g_wei', 'g_whr', 
'l_ch',
'l_tg'}

Females 20.51 33.33 80 {'drinkalcgram', 'g_bmi', 'g_fat', 'g_wc', 'g_whr', 'l_ch', 'l_tg', 
'mdrug10'}

EFS-RW
Males 23.68 37.50 90 {'dm_fg', 'drinkalcgram', 'g_bmi', 'g_fat', 'g_wc', 'g_wei', 'g_whr', 

'l_ch', 'l_tg'}

Females 20.51 33.33 80 {'drinkalcgram', 'g_bmi', 'g_fat', 'g_wc', 'g_whr', 'l_ch', 'l_tg', 
'mdrug10'}

Table 5:  Related metrics and features selected by our eigenvector-based feature selections.
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                        Feature Selection
              Metric Expert SFS for Male Our Methods for Male SFS for Female Our Methods for 

Female
IoU N/A 23.08% 23.68% 9.09% 30.56%

Coverage N/A 37.50% 37.50% 16.67% 45.83%
Accuracy 75.85% 78.84% 78.35% 77.65% 83.65%

Computing Time (Sec) 8,675 380,386 263 380,350 260

Table 6: Comparison of related metrics between SFS and our method for males and females.

                                               Item for Comparison
     Authors and Title

Recognition 
Rate

Description of Method, Number and Types of FLD and 
Features

Birjandi et al., ‘Prediction and Diagnosis of Non-
Alcoholic Fatty Liver Disease (NAFLD) and 

Identification of Its Associated Factors Using the 
Classification Tree Method’, 2016

75%

● The selection of lab test features (non-alcoholic) is 
determined artificially

● 15 features directly related to FLD are selected based 
on the collected data after analysis.

Raika et al., ‘Prediction of Non-alcoholic Fatty Liver 
Disease Via a Novel Panel of Serum Adipokines’, 

2016
86.4%

● Using only male data for model training is used
● The selection of lab test feature (non-alcoholic) is 

determined based on the 4 features specified in the 
formula for calculating non-alcoholicity

Yip et al., ’Laboratory parameter-based machine 
learning model for excluding non-alcoholic fatty liver 

disease (NAFLD) in the general population’, 2017
87%

● Using only male data for model training 
● The selection of lab test feature (non-alcoholic) 

is determined based on the 6 specified features in 
another formula for calculating non-alcoholicity

Islam et al., ‘Applications of Machine Learning in 
Fatty Live Disease Prediction’, 2018 70.7%

● Using male and female data for model training
● The selection of lab test features (non-alcoholic and 

alcoholic) is determined artificially
● 8 features that are directly related to FLD are selected 

through analysis based on the collected data

Table 7: Recognition rate and brief description of prior research.

Figure 14: Accuracy for two baselines and five LSTM-realed models for males and females.
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Ma et al., ‘Application of Machine Learning 
Techniques for Clinical Predictive Modelling: A Cross-
Sectional Study on Non-alcoholic Fatty Liver Disease 

in China’, 2018

83.41%

● Using male and female data for model training
● The selection of lab test features (non-alcoholic) is 

determined artificially
● 15 features directly related to FLD are selected based 

on the collected data after analysis

Wu et al., ‘Prediction of fatty liver disease using 
machine learning algorithms’, 2019 86.48%

● Using male and female data for model training
● The selection of lab test features (non-alcoholic and 

alcoholic) is determined artificially
● 10 features directly related to FLD selected after 

analysis based on the collected data

                   Metrics
Classifiers Gender AUROC Precision Recall F1 Score Accuracy Computing Time 

(hh:mm:ss) Error Reduction

LSTM Males 0.85 0.78 0.73 0.75 76.90% 06:45:36 6.78%
Females 0.90 0.81 0.79 0.80 82.68% 08:13:20 33.84%

biLSTM Males 0.86 0.78 0.76 0.77 78.35% 03:05:08 12.63%
Females 0.90 0.81 0.81 0.81 83.43% 02:53:45 36.71%

GRU Males 0.86 0.77 0.76 0.77 78.17% 02:27:56 11.90%
Females 0.90 0.81 0.81 0.81 83.38% 02:16:22 36.52%

Stack-LSTM Males 0.86 0.79 0.75 0.77 78.26% 03:20:30 12.27%
Females 0.90 0.81 0.81 0.81 83.62% 03:08:10 37.43%

Stack-biLSTM Males 0.87 0.77 0.78 0.78 78.23% 04:36:19 12.15%
Females 0.90 0.81 0.81 0.81 83.65% 04:20:34 37.55%

Table 8:  Comparison of AUROC, Precision, Recall, F1 score, and Accuracy based on different classifiers.

error reduction) for females. Besides, their AUROC is 0.86 and 
0.9, respectively.

Discussions

In this section we discuss some of the experimental results and 
offer some findings based on our observations and the experts’ 
domain expertise.

Efficient feature Selections

In this study, we propose and implement various eigenvector-
based feature selection methods to our dataset which has 252 
features reduced from oringinal 446 features, and either one of 
our feature selections significantly reduces the time for feature 
selection. Herein, we take the first 24 most important features 
by our eigenvector-based feature selection rather than SFS or 
other feature selection methods. According to our experimental 
result, it took more than 7 days for performing SFS to retrieve 24 
important features. Therefore, most of the features found by our 
acceleration method meet expert suggestions, but the computing 
time is far less than that of SFS. Hence, although the number 
of features and width of the window can be enlarged, it is time-
consuming and inefficient to the feature selection, and helpless 
for the patients to follow the recommendation.

In addition, based on the results listed in Tables 4 to 6, our features 
selection method with the highest IoU and Coverage is EFS-TW 
which spent the shortest computing time in selecting features 
and outputting a global sub-optimal feature set. Also, our feature 
selections have met the requirements and targets, speedup and 
precision, of this study. Regarding the similarity to experts, our 

methods are close to or higher than SFS, but the computing time 
is far lower than SFS. The computing time of our method listed 
in Table 6 involves the time of executing three eigenvector-based 
feature selections in terms and then determining the best one. 
Besides, by observing the results listed in Table 5, IoU (30.56) 
and Coverage (45.83) for female of EFS-TW is different from 
and higher than IoU (20.51) and Coverage (33.33) for female 
of EFS-TRW and EFS-RW, the possible reason can be the data 
imbalance in our dataset and the value of threshold which needs 
more experiments to determine and clarify. Hence, we determine 
the threshold by taking the sum of absolute value of eigenvector’s 
value shown in Formulas 13 and 14, and herein we take absolute 
value of eigenvector’s value because of vector’s directionality to 
avoid the cancellation which cannot highlight the importance of 
features.

Moreover, for the features selected by our methods that listed in 
Table 4, we discuss the possible reasons for that why SFS and 
our methods unselect some features as the important risk factors 
such as features ‘food18’ to ‘food20’, and why SFS selects the 
feature ‘psick16’, ‘psick17’, ‘food20’, and ‘psick21’, but our 
methods choose the feature ‘rsick10’ as well. By observing our 
dataset, the potential reason is a high correlation between those 
unselected features and the selected features which is accounted 
for its effects already. In other words, the selected features are 
dataset-dependent since our dataset is large. Specifically, for food 
features such as ‘food18’ to ‘food20’, they are unselected for 
predicting FLD directly since the effects of food intake may vary 
among individuals. BMI, body fat, or waist circumference may 
also reflect food intake effects, which are more consistent features 
and thus selected by experts and our methods for predicting 
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FLD. Besides, regarding the aspect of predictive medicine and 
data source, a health screening center rather than a hospital, 
the medical history with records of family or relatives having a 
disease such as diabetes is more concerned than the disease the 
patient suffered in the past or suffering now.

Furthermore, comparing the recognition rate (Accuracy shown 
in Table 6), and method, number and types of features to prior 
research, our eigenvector-based feature selections not only 
optimize the high-dimension features of large dataset rapidly but 
achieve the recognition rate better than or close to that of prior 
research. For example, as shown in Table 7, the best recognition 
rate of prior research is ranging from 70.7% to 87%, but their 
method, types of FLD, and numbers and types of features are all 
limited and more less than ours.

High-performance prediction of FLD

For the performance of prediction, according to the result listed 
in Table 8, each metric shows that our prediction has achieved 
and satisfied the targets, such as speedup and precision, of this 
study. Comparison with prior research mentioned, our proposed 
methods have the ability to optimize the high-dimension features 
of large dataset rapidly and achieve better recognition rate than 
SFS and better performance than prior research. For this issue, 
we discuss and find the reason as follows.

Regarding AUROC, Precision, Recall, and F1 Score, for these 
LSTM-related classifiers, the values of all these metrics of 
females are better than that of males. Particularly, AUROC is 
ranging from 0.85 to 0.87 for males and 0.9 for females. Classifier 
Stack-biLSTM achieves the top one for both males and females.

Regarding accuracy, error reduction, and computing time shown 
in Table 8, classifier biLSTM achieves the top one accuracy of 
78.35% with an error reduction of 12.63% for males, and Stack-
biLSTM achieves the top one accuracy of 83.65% with an error 
reduction of 37.55% for females. It is reasonable that because 
the biLSTM and Stack-biLSTM and can gather more information 
than LSTM to improve its accuracy. Also, we note that the error 
reduction improves from 6.78% to 12.63% for males using 
biLSTM rather than LSTM, and 33.84% to 37.55% for females 
using Stack-biLSTM rather than LSTM. Still, the corresponding 
computing time can be shortened from around 6.75 to 3 hours 
for males and 8.25 to 4.3 hours for females. If we want to use the 
classifier with the shortest computing time, GRU saves around 4.3 
hours for males and 6 hours for females, but the error reductions 
are acceptable. Besides, we also find that the accuracy for males 
is consistently lower than for females, and the possible reason 
could come from data imbalanced for females that are shown in 
Figure 11. That is, it shows that the FLD and NFLD of statistics 
for females have an imbalance situation between 2009 to 2016.

Conclusion

This paper explores a numerical, heterogeneous, large-scale, and 
high-dimension health dataset collected from a health screening 
center for FLD prediction. In practice, early prediction to the 
future status is much more valuable from the viewpoint of 

preventive medicine. For such a dataset, we apply our efficient 
eigenvector-based feature selections to optimize the feature set and 
automatically select the features. EFS-TW is the method with the 
highest IoU and Coverage but little time in computing compared 
to SFS. Besides, we conduct interpolation for preparing fixed-
interval input data with all historical information to fulfill the 
operating requirement of LSTM, and compare the performance 
of various LSTM-related classifiers, LSTM, biLSTM, GRU, 
Stack-LSTM, and Stack-biLSTM, for training and evaluation. 
In conclusion, the proposed prediction scheme provide valuable 
prediction model and results for preventive medicine and lifestyle 
changes to eliminate the critical features that contributed to FLD 
progressively. Also, sufficiently high prediction accuracy allows 
the patient to forego a time-consuming and costly abdominal 
ultrasound.
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