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Abstract
Diabetic retinopathy is a diabetes complication 

that affects the eyes, caused by damage to the blood 
vessels of the light-sensitive tissue of the retina. At the 
onset, diabetic retinopathy may cause no symptoms or 
only mild vision problems, but eventually it can cause 
blindness. Totally automated segmentation of Eye 
Fundus Images (EFI) is a necessary step for accurate 
and early quantification of lesions, useful in the future 
for better automated diagnosis of degree of diabetic 
retinopathy and damage caused by the disease. Deep 
Learning segmentation networks are the state-of-the-art, 
but quality, limitations and comparison of architectures 
of segmentation networks is necessary. We build off-the-
shelf deep learning architectures and evaluate them on 
a publicly available dataset, to conclude the strengths 
and limitations of the approaches and to compare 

architectures. Results show that the segmentation 
networks score high on important metrics, such as 
87.5% weighted IoU on FCN. We also show that network 
architecture is very important, with DeepLabV3 and 
FCN outperforming other networks tested by more 
than 30 pp. We also show that DeepLabV3 outperforms 
prior related work using deep learning to detect lesions. 
Finally, we identify and investigate the problem of very 
low IoU and precision scores, such as 17% IoU of micro-
aneurisms in DeepLabV3, concluding it is due to a large 
number of false positives. This leads us to discuss the 
challenges that lie ahead to improve the limitations that 
we identified.
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1.  Introduction
Data Lesions that are characteristic of Diabetic Retinopathy 
(DR) in different stages include micro-aneurisms (MA), which 
are small red and rounded regions resulting from augmented 
capillaries, hard and soft exudates (EX, hard=HE, soft=SE), which 
are yellowish deposits of lipids and proteins, and hemorrhages 
(HA), larger blood stains that are a serious signal of advancing 
conditions. Proliferative Diabetic Retinopathy also exhibits 
neovascularization and other affections [1]. Figure 1(a) shows 
the original Eye Fundus Image (EFI) and Figure 1(b) shows 
the corresponding ground truth pixelmap with exudates (hard 
and soft), microaneurysms and hemorrhages. It also includes 
the optic disc. The deep learning segmentation network is given 
a large dataset with images similar to the one shown in Figure 
1(a), and pixelmaps similar to Figure 1(b) and learns how to 
classify each pixel of the image to obtain a pixelmap as close as 
possible to the pixelmap shown in Figure 1(b). Figure 1(c) is the 
segmentation output pixelmap, with the lesions and optic disk 
that were detected by a deep learning network. The semantic 

segmentations obtained in Figure 1 are classifications of each 
individual pixel as one of six possible classes that include each 
type of lesion, plus the background pixels that cover more than 
93% of all the area. The learning procedure is based on feeding 
a training dataset of images and corresponding ground truth 
pixelmaps to the segmentation network so that it is able to adjust 
its thousands of inner weights to recognize the lesions. The 
segmentation network is an evolution of the classification Deep 
Convolution Neural Network (DCNN). The classification DCNN 
is a multi-stage neural network with multi-layer convolutional 
stages having sparse connections, and a multi-layer fully-
connected stage at the end. Each neuron of the convolutional 
layers calculates from a local region (the receptive field), followed 
by non-linear activation plus pooling. The segmentation DCNN 
is a modified DCNN to detect the class of each individual pixel 
instead of the whole image. In order to do that, the last layers 
of the classification DCNNs are replaced with a number of up 
sampling or decoding stages that reconstruct the original size of 
the image, but outputting a pixelmap where each pixel is an id 
of the class assigned to the pixel in the original image (e.g. the 
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section 4 we show the experimental results, analyze and conclude 
regarding those results. Finally, section 5 shows conclusions and 
discusses further work in the future.

2.  Related Work
Given the amazing capabilities of deep learning networks applied 
to segmentation, researchers were already starting to explore 
them in segmentation tasks around 2014, where DCNNs were 
applied to handle, for instance, brain tumour segmentation in 
the BRATS challenge [2]. Works [3,4] are examples of DCNNs 
applied around 2014 in that context and reported improved 
accuracy when compared with the more traditional alternatives 
based in unsupervised segmentation followed by classification, 
with continuing focus on the same approaches along the years [5]. 
The design of the DCNN-based segmentation networks evolved 
along time. One of the first well-structured network architectures 
was the Fully Convolutional Network (FCN) [6]. Its approach 
was to take any DCNN classification network and replace its 
last layers (the fully-connected network based classifier) by 
additional convolution layers, followed by a sequence of up-
sampling layers, increasing the size of the feature maps step-
by-step, until the full image size was restored. In FCN the up-
sampling was based in interpolation, while the convolution 
layers would adjust their filter coefficients along training epochs 
based on error back-propagation. The FCN achieved 62% in 2012 
PASCAL VOC challenge. An improved design further extended 
error back-propagation to the deconvolution stages as well, 
achieving 72.5% on the same challenge. U-Net introduced further 
innovations [7], such as forwarded cropped feature maps from an 
encoding layer and a de-coding layer at the same level. Segnet 
is another deep convolutional encoder-decoder architecture for 
image segmentation. The architecture of its encoder network is 
topologically identical to the 13 convolutional layers in the VGG16 
network. The decoder network maps the low-resolution encoder 
feature maps to full pixelwise classification. The novelty of Segnet 
lies in how pooling max-pooling output indexes are forwarded to 
the corresponding decoder level, resulting in nonlinear decoding 
capability. The up-sampled maps are sparse and are then 
convolved with trainable filters to produce dense feature maps. 
DeepLab [8] adds new innovations that increase precision when 
compared to other prior architectures: Atrous Spatial Pyramid 
Pooling (ASPP) is an approach that segments at different scales 

pixel belongs to lesion X). The DCNN usually learns using a 
gradient descent algorithm that iteratively adjusts hundreds of 
thousands of convolutional and neural network weights based 
in backpropagation of the error (difference between current 
output and the ground truth at pixel level). Training consists of 
a large number of iterations adjusting the weights based on the 
delta error of individual images and corresponding pixelmaps, 
trying to converge to an accurate estimation of the class of each 
pixel. Semantic segmentation is evaluated based on testing if the 
classification of each pixel matches the classification of the same 
pixel in the ground truth.

Segmentation networks are state-of-the-art in segmentation 
of medical images, but quality, limitations and comparison of 
architectures of segmentation networks is still missing in the 
context of segmentation of lesion in eye-fundus images. After 
reviewing related work, we build off-the-shelf deep learning 
architectures and evaluate them on a publicly available dataset, 
to conclude the strengths and limitations of the approaches and 
to compare architectures. We investigate the scores on a set of 
metrics that say the most regarding semantic segmentation, 
including intersect-over-the-union, precision and recall for 
each lesion being detected. We also investigate how tuning, data 
augmentation and patching may or may not improve the results. 
We conclude that the best segmentation networks outperform 
related work and include very good scores, such as 87.5% IoU of 
FCN, but at the same time we show that they have much low scores 
in other most often overlooked details, such as 17% IoU in micro-
aneurisms due to a large number of false positives. We finalize by 
discussing the challenges that lie ahead as a consequence of our 
investigations. This study has a few limitations. First of all, it focuses 
on the fundamental task of segmentation of lesions using deep 
learning segmentation networks, but further work is necessary 
to quantify the influence of segmentation quality in the outcome 
of further analysis of diabetic retinopathy. Secondly, although 
the current study already includes thousands of lesions and we 
used data augmentation techniques to augment the diversity of 
the dataset, a wider study could be done using thousands of eye-
fundus images. This work is structured as follows: First we review 
related work in section 2. Section 3 describes materials and 
methods, describing the interpretation that metrics should have, 
then it reviews the structure of alternative off-the-shelf DCNNs 
for segmentation tasks and finally the experimental setup. In 

Figure 1: Example of EFI, pixelmap and segmentation pixelmap output.
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simultaneously with different sample rates over convolution 
feature maps over different actual fields-of-view. This way objects 
are captured at varied scales. Additionally, probabilistic graphical 
models are used for improved determination of boundaries of 
objects. The outputs of the final DCNN layer are combined with 
a fully connected Conditional Random Field (CRF) to do that, 
resulting in 79.7% IoU on PASCAL VOC-2012 semantic image 
segmentation task. Surveys [9-11] review works on automated 
analsys of Diabetic Retinopathy. Only a few of the works 
reviewed there have some relation to segmentation of lesions, e.g. 
Prentasic et al. [12], Gondal at al. [13], Quellec et al. [14], Haloi 
et al. [15], van Grinsven et al. [16], Orlando et al. [17] and Shan 
et al. [18]. From those works, [12,15,16,18] do not segment the 
image and the experimentation in those papers does not evaluate 
segmentation, instead they classify a small squared window as a 
type of lesion or not. Evaluation of the approaches uses thousands 
of windows picked statically based on labels from groundtruths. 
By contrast, segmentation involves taking the whole image as 
input and outputting the contours of segments, which requires 
locating the zones of the lesions and classifying all pixels regarding 
the segment each belongs to. The remaining works [13,14,17] 
do include segmentation of the images. [13,14] are based on 
generating heatmaps from the inner weights of some layer(s) of 
a convolutional neural network classifying Diabetic Retinopathy. 
[17] also uses a classification convolution neural network, adding 
also hand-crafted features that then pass through a random 
forest classifier of red lesions. Those works report high scores for 
image-level lesion detection task (near to 100%), which is very 
different from segmentation. For lesion-level detection, those 
works report sensitivies for 1 FPI varying between 47 and 50% for 
hemorrhages, 40 and 57% for hard exudates, 64 to 70% for soft 
exudates and 7 to 38% for micro-aneurisms. But our focus in this 
paper is not image-level or lesion-level lesion detection, it is on 
assessing segmentation networks in detail, focusing on semantic 
segmentation of lesions. Semantic segmentation is also called 
scene labeling and refers to the process of assigning a semantic 
label (e.g. car, people, and road) to each pixel of an image [19]. In 
semantic segmentation each pixel must be assigned the exact class to 
which it belongs in reality, and train and test ground truths should 
be pixelmaps that should identify, as much as possible, the correct 
class of each pixel. Nevertheless, we include a brief section on results 
of comparison to those prior works doing lesion detection using 
the same dataset and evaluation approach used by them, where we 
conclude that the best segmentation networks outperform those 
prior approaches. 

3.  Materials and Methods
In this section we first review metrics and DCNN architectures 
that we compare, representing some of the most useful 
alternatives. Then we define the experimental setup.

3.1. Metrics 

The assessment of segmentation in general requires metrics that 
evaluate the degree of overlap of the proposed segments with 
the actual segments identified in the ground truth masks. It is 
important to evaluate the degree to which both overlap, and also 

how close the discovered boundaries match actual boundaries 
of the segments. The most rigorous way to evaluate the quality 
of segmentation is based on evaluating the assignment of classes 
to each and all individual pixel. Most importantly, it is essential 
to evaluate those for each class (type of lesion and/or structure) 
instead of only the “global numbers”, since the “global numbers” 
are heavily influenced by the largest class, the “background”, 
because it occupies a huge majority of the total number of pixels. 
A set of metrics is defined next: 

3.1.1 Global Accuracy: Global accuracy is the ratio of correctly 
classified pixels, regardless of class, to the total number of pixels 
in the image or in all images. Global accuracy provides a single 
value that is sometimes used to compare approaches. However, it 
can hide major per-class deficiencies because accuracy of largest 
classes with most pixels (“background” in EFI images) hides 
inaccuracies in segmentation of other classes (lesions in EFI); 

3.1.2 Class Accuracy: Class accuracy identifies the percentage of 
correctly identified pixels of each class (each lesion or structure). 
Class accuracy is the ratio of correctly classified pixels to the total 
number of pixels in that class, according to the ground truth. 
In other words, the accuracy score is acc(c)= TPc/(TPc+FNc), 
where TPc is the number of true positives and FNc is the number 
of false negatives. Class accuracy conveys relevant information, 
but it should not be used as a main qualifier of quality of 
segmentation because it is a partial measure. It reports the quality 
of the approach regarding segmentation of pixels that belong 
to the class. Its limitations are easy to understand with as impel 
example: a DCNN network always returning the same class for all 
pixel’s scores 100% in this metric for that class. 

3.1.3 Mean Accuracy: It is the mean of accuracy over all classes. 
Being an average, it describes the average behavior, potentially 
masking deviating behavior of individual classes. Weighted 
accuracy is a weighted mean, weighted on the number of pixels of 
each class. The degree of masking is even much larger in weighted 
accuracy because accuracy of classes with more pixels are better 
represented in the result.

3.1.4 Intersection over the Union = IoU: IoU is also known as 
Jaccard coefficient and represents the fraction of pixels of a class 
classified well to all pixels classified as that class plus pixels of that 
class classified as another class, IoU = TP/(TP+FP+FN). While 
accuracy evaluates only against the pixels that actually belong to 
the class (TP+FN), IoU also considers false positives, which is 
pixels that are classified as belonging to the class in spite of not 
belonging to it. 

3.1.5 Mean IoU: the mean IoU is the average IoU score of all 
classes in all images, and weighted IoU is a weighted mean of 
class IoU, weighted on the number of pixels of each class. 
Being average metrics, they can potentially mask deficiencies of 
individual classes. 

3.1.6 Boundary contour matching score (BF score): the 
boundary contour matching score measures the degree to 
which the actual boundary of regions is matched by predicted 
boundaries of those regions. A match between boundaries is 
detected iff the actual and predicted boundary pixel is within 



EJBI – Volume 16 (2020), Issue 3

23 Furtado P (2020) - Detailed Analysis of Semantic Segmentation of Diabetic…

a predefined distance (Matlab2018 default 0.75% of the image 
diagonal). For each class, precision is defined as the ratio of pixel 
matches of predicted boundary to actual boundary, divided by the 
number of boundary pixels in the predicted boundary. Similarly, 
recall is defined as the ratio of pixel matches of actual boundary 
to predicted boundary, divided by the number of boundary pixels 
in the actual boundary. The BF score uses the F-measure that is 
computed from the precision and recall: F=2*P*R/(P+R). As 
with the previous metrics, there is mean BF-score, weighted BF-
Score and per class BF-Score, with the same limitations as those 
described for the previous metrics. 

3.1.7 Class precision, recall and confusion matrix: precision 
measures the fraction of pixels classified as class C that are of 
class C, and recall measures the fraction of pixels of class C that 
were classified as class C. The confusion matrix is a square matrix 
representing the number of pixels of each class (represented in 
rows) that were classified as each class (represented in columns).

3.2 DCNN Segmentation Architectures

DCNN segmentation networks are distinguished by different 
architectural choices and innovations. We are comparing a set 
of networks, verifying how the architectural choices reflect in 
accuracy. Next, we summarize architectural differences between 
the alternatives, considering our implementations for this work. 

5.2.1 Simple: „Simple“ is the most basic encoder-decoder 
architecture with only 4 layers in each of the two stages- encoding 
and decoding, plus a softmax and a pixel classification layer 
for output. The encoding stage has 4 convolution layers, with 
reluactivation functions, and 4 2x downsampling maxpool layers. 
The decoding stage has the “opposite”, two de-convolution layers 
with reluactivation. 

encodingLayers = [ conv, relu, maxPoolDownsample2x, conv, 
relu, maxPoolDownsample2x;] 

upsamplingLayers = [ transposedConvUpsample2x, relu, 
transposedConvUpsample2x, relu]

The convolution layers apply 64 3x3 filters with stride [17], and 
the deconvolution layers apply 64 4x4 filters. 

3.2.2 Fully Convolutional Network (FCN): The FCN uses a 
DCNN classification network (feature extraction or encoding 
stages), plus a sequence of up-sampling layers (decoding stages) 
that use interpolation to compute the full image size pixelmap. 
In FCN backpropagation learning adjusts the weights of the 
coding layers. Our FCN implementation had 51 layers in total, 
using VGG-16 as encoding network (VGG-16 has 7 stages 
corresponding to 41 layers). Figure 2(a) shows a sketch of the 
architecture, where it is possible to see that most FCN layers are 
VGG-16, but FCN also forwards feature maps: the pooled output 
of coding stage 4 is fused with output of the first up-sampling 
layer that is placed just after stage 7 of VGG16, and the pooled 
output of coding stage 3 is fused with the output of the second 
up-sampling layer. Finally, the image input is also fused with the 
output of the third up-sampling layer, all this followed by the 
final pixel classification layer. The figure indicates forwarding 
links and „fusing“ layers. 

3.2.3 U-Net and Segnet: Figure 2(b) represents a rough sketch 
of both the U-Net and Segnet architectures, with VGG-16 as 
feature extraction (encoding) stages. Contrary to FCN, both these 
architectures have full decoding stages that deconvolve and are 
symmetric to the corresponding encoding layers. While U-Net 
forwards cropped feature maps directly after ReLu regularization 
at each stage, which are concatenated with the corresponding 
stage outputs at the destination, Segnet forwards max-pooled 
outputs and unspools at the destination. This way the decoder up-
samples using pooling indices computed in the maxpooling step of 
the corresponding encoder, to perform non-linear up-sampling. Our 
U-Net had 5 encoding layers and 70 layers in total, plus connections 
between the layers. The corresponding Segnet architecture had the 
same 5 encoding layers and a total of 73 layers.

3.2.4 DeepLabV3: DeepLabV3 is the deepest network tested 
in this work, with 100 layers. Figure 3(a) shows a summary of 
its main layers. Our DeepLabV3 architecture used Resnet-18 

Figure 2: Rough sketch of network architectures.
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pre-trained network as feature extractor, plus forwarding 
connections to the the Atrous Spatial Pyramid Pooling (ASPP) 
layers, indicated in the figure, which enables segmenting of 
objects at multiple scales. The outputs of the final DCNN layer 
are combined with a fully connected Conditional Random 
Field (CRF) for improved localization of object boundaries 
using mechanisms from probabilistic graphical models. The 
figure shows that the feature extraction part of our DeepLabV3 
implementation is using Resnet-18 layers, with 8 stages and 
totaling 71 layers, the remaining stages being ASPP plus the 
final stages. 

5.2.5 Faster RCNN: The Faster-RCNN we use is a region-based 
CNN that uses Resnet-50 as its feature extraction network, 
to which it adds a region proposal network (RPN) to generate 
region proposals. The Faster-RCNN also pools CNN features 
corresponding to each region proposal for object detection. 
Figure 3(b) shows that the first part of the network is a set of 
13 of the 16 stages of Resnet-50 CNN, which has 177 layers, the 
remaining is the RPN and box classification parts, for a total 
Faster-RCNN size of 188 layers.

3.3 Effects of Patching and Data Augmentation

 The original EFI images used in our experiments are quite 
big (2848x4288). For faster processing and to avoid memory 
limitations of the GPU, it is convenient to resize those images 
to smaller sizes, however we were aware that this could have 
relevant consequences concerning detection of the smallest 
lesions (e.g. microaneurysm’s and other small instances 
of lesions). This has motivated us to also compare with the 
alternative of dividing the original images into patches that 
would be segmented separately (patching is also a frequent 
operation in semantic segmentation). The images were divided 
into four equal-sized slices, simultaneously contributing 
to augmenting the dataset significantly. The objective was 
therefore to include evaluation of whether using patching 
would be beneficial or not.

3.4 Experimental Setup

In order to evaluate the architectures and to analyze the quality 
of segmentation, we needed a set of images together with ground 
truth pixelmaps classifying each pixel of each image as one of the 
possible classes. It is quite hard to obtain the ground truth data 
because it requires experts to label each of the lesions in each 
of the images comprising the dataset. Luckily this was available 
in the form of a challenge [20] acquisition of the images being 
done in an Eye Clinic in Nanded, Maharashtra, India. The IDRID 
dataset includes 81 EFI images with annotation of individual 
pixels. the following lesions and structures were annotated: the 
optic disk, micro-aneurisms, exudates classified as two sub-types, 
soft and hard, hemorrhages and the „default“ class, background. 
The equipment used to acquire the images was a Kowa VX-10 
alpha digital fundus camera with 50-degree field of view (FOV), 
centered near the macula. Image resolution was 4288 × 2848, 
saved as jpg. Experts validated the quality of the images and their 
clinical relevance. For our work we divided the dataset randomly 
to obtain 55 training and the remaining testing images (and 
ground truths). We used a machine running windows 10. The 
hardware was an intel i5, 3.4 GHz, 16 GB of RAM 1TB SSD disk. 
A GPU was added to the PC, consisting of an NVIDEA GForce 
GTX 1070 GPU (the GTX 1070 has a Pascal architecture and 
1920 cores, 8 GB GDDR5, with memory speed of 8 Gbps). The 
network architectures were implemented in Matlab2018 and 
were pre-tested against an MRI dataset of abdominal organs with 
known metric outputs to verify that the networks and software 
were running correctly. This pre-test was positive. For the 
experiments themselves we defined an SGDM learning algorithm 
(stochastic gradient descent with momentum 0.9), minibatch 
with size 16 (decreased if necessary for lack of GPU memory), an 
initial learning rate of 0.001 and tested the quality of the outputs, 
adjusting the learning rate whenever the outcome was classifying 
every pixel as background after converging. Note that we weight-
balanced the pixel classification layer to counter the imbalance 
between classes, with most pixels belonging to the background 

Figure 3: Rough sketch of network architectures (DeepLabV3 and Faster R-CNN)}.
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class. The training would run for 500 epochs, although we would 
rerun with different settings whenever we noted that there 
more epochs would be needed for convergence. After pre-tests 
we found that both U-NET and FCN would easily converge to 
classifying every pixel as background, in spite of weigh-balancing, 
which we corrected by decreasing the learning rate to 0.0005 
and giving the network architectures more epochs to converge 
if necessary (we could stop manually when we noted visually 
convergence was already visible for many epochs). DeepLabV3 
needed no such modifications, since it would converge nicely to a 
better classification of lesions and all classes with the initial learning 
rate of 0.001. Our reported results were preceded also by extensive 
tests with many other alternatives that proved sub-optimal when 
compared with our final results, therefore we do not report on them. 
One such direction was adding data augmentation, which would 
artificially increase significantly the number of images by inserting 
random changes in the existing images. We tested with random 
rotations and translations. Another direction of testing prior to final 
experiments was testing several image resizing options.

4.  Experimental Results
4.1 Timings 

Training times are shown in Figure 4 in units of minutes. Training 
of images with sizes 1024x2048 is denoted as (-rsz), while training 
of patches is denoted as (-p). Note that patches take much longer, 
since the datasets are much larger (4 patches per image). UNET was 
slowest (1736 mins), then FCN was slowest (635 mins rsz, 2659 mins 
patches). DeepLabv3 is much faster comparatively (19 mins resized; 
138 mins patched). In what concerns segmenting new images, a quick 
experiment with 10 images resulted in the following: FCN, 1024 × 
2048 rsz, per image mean= 13.35 secs, std= 0.84 secs; DeepLabv3, 
1024x2048 rsz, per image mean = 5.90 secs, std = 0.69 secs.

4.2 Visualization of Test Images and Outputs

 Next, we observe four images and the corresponding 
segmentations given by the two best performing approaches 

(DeepLabV3 and FCN). Figures 5 and 6 show test images 2 and 
5 with coloured superimposed segments, while Figures 7 and 8 
show images 67 and 70 with colored pixelmaps in separate. From 
Figures 5 and 6 we conclude: (1) FCN has some deficiencies 
segmenting the optical disk (parts of the optical disk areas 
uncovered), while DeepLabV3 is much better, but still not perfect 
(spills over to the background). In what concerns lesions, both 
have a lot of false positive “noise” (regions incorrectly marked 
as lesions in the background), perhaps less in the case of FCN, 
and FCN also has some “hallo noise” marked as lesions in the 
boundary of the eye fundus images.

Figures 7 and 8 use a different perspective for two other images, 
with pixelmaps separated from the images. Analyzing the 
pixelmaps, we can see that the ground truth pixelmaps (a) have 
significantly fewer lesion regions than the number of regions 
marked as lesions in the segmentations of either DeepLabV3 
(c) or FCN (d), DeepLabV3 being much worse (more pixel 
regions falsely classified as lesion) in that respect. Still, the optic 
disk was well segmented for these images in both networks, 
and both approaches were able to detect most lesions, the main 
problem being large amounts of false positive noise in the form 
of background regions marked as lesions (worse in DeepLabV3 
than in FCN).

4.3 Experimental Results

 Our experimental results are presented in this section and 
analyzed in the next one. „Global“ accuracy of the various 
approaches is shown in Table 1 (including also the RCNN 
alternative). These initial global results are further detailed by 
analysis of accuracy of each class (each lesion, plus the optic disk) 
in Tables 2, 3 and 4, where we report both accuracies, intersect-
over-the-union and the boundary score. Finally, we also report 
the confusion matrixes returned by the segmentation toolbox, in 
Figure 9. Tables 5 and 6 are confusion matrices for DeepLabV3 
and for FCN respectively, given as absolute values over all pixels 
of all images, which we then used to calculate per-class precision 

Figure 4: Training times.
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Figure 5: Coloured superimposed segments, test image 2.

Figure 6: Coloured superimposed segments, test image 5.

Figure 7: EFI and pixelmaps, test image 60.

Figure 8: EFI and pixelmaps, test image 70.

and recall that are shown in Tables 7 and 8. Since we also wanted 
to understand how patching affected accuracy, we include Table 
9, which compares to no-patching but resizing instead. Finally, 
we show a significant improvement in DeepLabV3 results by 
applying a different loss function than the default (cross entropy) 
in both Table 10 and 11. The applied loss function was mean IoU. 
We decided to try mean IoU to try to optimize IoU.

4.4 Discussions

The discussion is organized by parts, each first indicating which 
tables or figures are discussed and then explaining and reaching 
conclusions regarding those tables or figures.

4.4.1 Analysis of Table 1, global metrics: The best accuracy in 
the table was achieved by FCN (~90%), and DeepLab accuracy was 
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Method Global Accuracy Mean Accuracy Weighted IoU Mean IoU MeanBFScore
FCN 89.50 74.60 87.50 37.90 48.50

DeepLab 81.20 84.10 78.50 32.80 33.60
U-Net 58.70 59.80 56.20 16.10 19.60
Segnet 52.70 45.40 50.20 14.20 17.50
Simple 49.00 54.60 46.40 11.60 19.10

Faster-RCNN - - - 29.6 -

Table 1: Accuracy of 1K x 2K images.

Class FCN DeepL U- NET Segnet Simple F- RCNN
Background 89.9 80.9 58.4 52.3 48.3 -

OpticDisc 95.3 96.3 94.0 90.5 93.9 91.3
SoftExudates 61.0 83.1 47.9 24.8 29.5 11.7
Hemorrhages 58.0 64.3 35.6 47.8 28.3 5.4
HardExudates 80.4 96.2 55.7 36.6 64.8 22.1
Microaneurs 63.0 83.9 67.5 20.2 62.9 8.8

Table 2: Accuracy of each class using 1K x 2K images.

Class FCN DeepL U- NET Segnet Simple
Background 89.5 80.6 58.1 51.9 48.1

OpticDisc 76.8 68.0 17.3 16.0 10.1
SoftExudates 21.4 14.0 1.3 0.9 0.5
Hemorrhages 21.1 14.3 2.5 1.9 3.1
HardExudates 16.9 19.1 16.6 13.9 6.8
Microaneurs 1.7 1.0 0.6 0.3 0.7

Table 3: IoU of each class, 1K x 2K.

Class FCN DeepL U-NET Segnet Simple
OpticDisc 70.5 54.1 18.9 5.0 21.0

Background 59.9 43.9 35.6 31.1 36.9
HardExudates 54.5 46.2 30.7 41.4 24.3
SoftExudates 47.9 26.6 5.3 3.4 4.7
Hemorrhages 37.6 20.1 11.9 9.5 12.7

Microaneurysms 20.9 9.5 7.1 7.8 6.8

Table 4: BF-Score, 1K x 2K.

Class Bground MAneu Haemo HardEx SoftEx OpticD
Bground 5667700 494540 341120 371090 70506 42823
MAneu 292 4737 573 104 2 0
Haemo 22217 11517 67289 1424 1292 245
HardEx 1204 579 34 84552 507 15
SoftEx 2036 652 654 2550 14588 263
OpticD 3061 127 39 507 260 130950

Table 5: Confusion Matrix (absolute), DeepLab V3.

Class Precision Recall
Background 0.99 0.81

Microaneurysms 0.01 0.83
Hemorrhages 0.16 0.65
HardExudates 0.18 0.97
SoftExudates 0.17 0.70

OpticDisc 0.75 0.97

Table 6: Precision and Recall, DeepLab V3.
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Class Bground MAneu Haemo HardEx SoftEx OpticD
Background 12195251 473173 248019 563172 36800 52395

Microaneurysms 2238 8527 2400 334 24 22
Hemorrhages 40184 15049 87294 6486 916 558
HardExudates 5164 1425 9554 122508 9369 4318
SoftExudates 3824 668 1050 2626 15614 1810

OpticDisc 8147 276 1530 1150 385 233 516

Table 7: Confusion Matrix (absolute), FCN.

Class Precision Recall
Background 1.00 0.90

Microaneurysms 0.02 0.63
Hemorrhages 0.25 0.58
HardExudates 0.18 0.80
SoftExudates 0.25 0.61

OpticDisc 0.80 0.95

Table 8: Precision/Recall Matrix. FCN.

Method MeanAcc GlobalAcc MeanIoU Weighted.IoU MeanBFScore
DeepLab 84.1 81.2 32.8 78.5 33.6

FCN 74.6 89.5 37.9 87.5 48.5
FCN-patch 72.3 93.5 39.0 91.1 53.1
DeepLab- 

patch 70.0 75.9 24.0 72.7 43.8

Simple-patch 61.7 61.7 16.4 59.0 23.3
Simple 54.6 49.0 11.6 46.4 19.1

Table 9: Comparing Patching of 2x larger EFI image VS no patching?

Class IoU modified loss IoU default loss
Backgnd 97 89

Maneurysms 17 1.70
Hemorrhages 22 21
HardExudates 55 17
SoftExudates 45 21

OpticDisc 75 77

Table 10: Per class IoU on DeepLabV3: default (crossEntropy) loss vs modified loss.

Loss Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore
modified loss 97 61 52 95 58
default loss 90 75 33 88 35

Table 11: Global metrics on DeepLabV3: Comparing results, default (crossEntropy) loss vs modified loss.

also relatively high (~81%). The remaining network architectures 
tested exhibit low accuracies, between 40 and 59%. If we compare 
with Simple, accuracy of FCN improves from 49% (Simple) to 
90% (FCN), but on the other hand Segnet improved only 4% and 
U-net 6% to Simple. The mean accuracy and weighted IoU in the 
same table confirm these results (note however that mean accuracy 
of FCN decreases significantly (while that of DeepLab increases 
from 81% to 84%). The two last columns of the same table reveal a 
problem with the previously analyzed metrics: using mean IoU and 
mean BF-Score this time we can see that the values are very low for 
every network architecture (e.g. 11% to 40% mean IoU), including 
the ones previously classified as best. This is not an error; it is because 

the previous metrics were masking deficiencies significantly. The 
reason for the discrepancy is that the background pixels occupy 
more than 95% of all pixels, and the optic disk is also around two 
percent of all pixels). These two classes are much easier to segment 
than lesions because they have fairly constant properties (e.g. most of 
the quadrature of the Eye Fundus is always background, standing in 
the same positions in all images; the optic disk has a common shape 
(round) and size, with similar color properties in most EFI images 
as well). That means any metric that weights over all pixels or classes 
will represent mostly the quality of segmentation of the background 
and the optic disk, not the lesions. This also hints that the lesions are 
not well segmented using any of the architectures.
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4.4.2 Comparison with Faster R-CNN: For the Faster-RCNN 
we only report mean IoU (29.6%), lower than FCN (38%) 
and DeepLab (33%), but much better than the remaining 
architectures. Note that in the case of R-CNNs quality is measured 
by comparing the minimum-bounding rectangles (MBR) output 
by the architecture to the MBR of the ground truth.

4.4.3 Analysis of table 2, per-class accuracy: Observation 
of accuracy of each individual type of structure reveals very 
interesting details: first of all, we focus only in FCN and DeepLab 
because the remaining architectures have much worse results 
in this table. We can see that the optic disk has high accuracy 
(around 95%), and the background is also reasonably well-
segmented (FCN: 90%, DeepLab: 81%). From the remaining 
lesions, hard exudates also exhibit high accuracy (FCN: 80%, 
DeepLab: 96%), the other lesions had values between 58% and 
83% depending on which of the two networks and the lesion. 
The conclusion is that, according to this metric, optic disk, 
background and hard exudates are well segmented (85 to 96% 
accuracy), the remaining lesions are lower, in the range of 
(60% to 84%). However, accuracy hides deficiencies that IoU 
reveals better, as we discuss next.

4.4.4 Why does IoU reveal deficiencies and accuracy mask 
those deficiencies in EFI segmentation? The formula of mean 
accuracy is the True Positives divided by the sum of True 
Positives with False Negatives, while IoU adds also False Positives 
in the denominator. the DCNNs were very good identifying 
lesion pixels as lesions, but confound many background pixels 
for lesions. Since those are False Positive when we are calculating 
accuracy of lesions, they are not reflected in the result reported by 
accuracy, but are reflected in IoU of those lesions, since IoU adds 
False Positives to the denominator.

4.4.5 Analysis of Tables 3 and 4: These tables report measurements 
of two important metrics: Intersect-over-the-union (IoU) and 
the boundary F-score (BFScore). Once again, we focus only on 
the architectures with best results (FCN, DeepLab), since the 
other ones have very low scores comparatively. According to IoU 
results, all lesions have low scores, between 1.7% and 22% in the 
case of FCN and between 1% and 14% for DeepLab. The optic disk 
has higher IoU scores (FCN:77%, DeepLab:68%). This IoU metric 
is revealing the most relevant deficiency in the segmentation 
outcomes. From FCN and DeepLab values for class accuracies 
in Table 2 we can see that lesion pixels are still reasonably well 
identified as belonging to that lesion (58% to 96% accuracies), 
depending on lesion and architecture. But from the much lower 
values of IoU in Table 3 (1% to 21%) we conclude that large 
background areas that are not lesions are also identified as lesions 
(False Positive lesions). This is also apparent in the visualizations 
seen in a previous subsection. The addition of False Positives 
in the denominator of the formula of IoU allows this metric to 
reveal this deficiency much better. The conclusion is that FCN 
and DeepLab were able to identify lesions reasonably well but 
at the expense of also classifying many neighboring background 
pixels as lesions. There is a need to improve the approaches to 
avoid this limitation, e.g. by filtering false positives better. Note 
also that BF-Scores of individual lesions were higher than IoU of 

those classes, which is probably related to the threshold used in 
BF-Score to measure the distance from segmentation boundaries 
to ground truth boundaries.

6.4.6 Analysis of Tables 6 and 8: Tables 6 and 8 (obtained from 
confusion matrices of Tables 5 and 7, show the per-class precision 
and recall of DeepLabV3 and FCN, respectively. The recall values 
shown are high and coincide with the values of per-class accuracy 
shown before in Table 2, confirming that per-class accuracy 
reported by Matlab is the same as per-class recall (TP/(TP+FN)), 
the fraction of all pixels of one class that were correctly classified 
as that class. Precision, on the other hand, is much lower for 
most classes and very low for some lesions (e.g. in DeepLabV3 
we had microaneurisms:1%, hemorrhages 16%, hard exudates 
18%, soft exudates 17%). It means that a significant fraction of 
all pixels classified as a specific lesion are false positives, most 
frequently background pixels. (note also the detail that the only 
cases with a slightly lower recall (65%, 70%) are hemorrhages and 
soft exudates. These slight decreases are due to some confusions 
between the pairs Microaneurysms-hemorrhages and soft-hard 
exudates, because they have some similar characteristics, such as 
color).

4.4.7 Analysis of Table 9: Our experimentations with patching, 
shown in Table 9, were also interesting. Since the images 
were very big, we had to reduce their sizes from 2048x4096 to 
1024x2048 in most experiments. The objective of using patching 
in this context was to evaluate whether it would be better to keep 
the full image sizes and apply a kind of patching (dividing the 
images into quadrants) to avoid reducing the image size and 
this way avoid difficulties detecting the smallest lesions, versus 
the normal procedure we adopted. But Table 9 shows that the 
various accuracy metrics used did not improve significantly by 
using patching.

4.4.8 Analysis of Tables 10 and 11: The results we achieved 
by modifying the training loss function involved a significant 
improvement of quality of segmentation of lesions (in particular, 
IoU of microaneurysm’s improved from 1.7% to 17%, hard 
exudates from 17% to 55% and soft exudates from 21% to 45%). 
This confirms the fact that metric interpretation and use is crucial 
to correctly assess and improve the approaches, and also signals 
that more work on loss functions and training details is crucial 
in the future.

4.5 Brief on Comparison to Prior Work

Our focus in this work was detailed analysis of semantic 
segmentation results, but we also started work independently 
to compare with prior works using dataset [21] and the same 
approach those works use to evaluate quality of lesion detection. 
We measured sensitivity on 10 FPI of DeepLabV3. The results 
were: 87% for hemorrhages, 97% for hard exudates, 92% for soft 
exudates and 52% for micro-aneurisms. This compares with 
the following results of [14], one of the tops performing prior 
works: 71% for hemorrhages, 80% for hard exudates, 90% for soft 
exudates and 61% for micro-aneurisms. The conclusion is that, 
apart from micro-aneurisms, DeepLabV3 was superior when 
compared with prior work. F. 
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4.6 Conclusions from Experimental Work 

Some important conclusions standout from the previous analysis 
of the results:

a) how successful is it to segment most difficult, small and hard 
to identify lesions, and how successful is it to segment larger 
and easier to identify objects such as the optic disk? Segmenting 
lesions is not very successful (e.g. IoU of 2% microaneurysm’s, 
17% to 21% other lesions on FCN), segmenting larger objects 
such as the optic disk is much more successful; 

b) is there hope that the segmentation quality using deep learning 
can be improved in the future, how? Yes, the fact that accuracy is very 
high means that most deficiencies are associated with background 
being classified as lesion (false positives), we have to improve 
approaches to add filters that will filter out those false positives; 

c) in the light of the results, why can some metrics fool us and 
how should they be interpreted and used to avoid mistaken 
conclusions, how should we interpret the differences in metrics? 
We have explained why accuracy and metrics over all pixels were 
reporting high values that were very different from IoU or BFScore, 
and we have explained why investigating IoU of individual lesions 
is very important. Metrics must be correctly interpreted, but all the 
studied metrics are still useful for their meaning, e.g. high accuracy 
means pixels that are lesions are very well identified as such; 

d) the comparison of the approaches, concluding which is best and 
how much they improve compared to the reference elementary 
architecture. When comparing with Simple (the reference 
architecture), we conclude that all the other architectures were 
able to achieve much better quality (e.g. global accuracy Simple: 
49%, FCN:89.5%, mean IoU Simple:11.6%, FCN:37.9%), and 
the two architectures that were able to achieve best performance 
were DeepLabv3 and FCN. 

e) since many lesions are small or very small, is there an advantage 
in enlarging the images and doing the segmentation on patches 
of those enlarged images? is a Faster-RCNN approach based in 
MBRs better? The results have shown that it was not very useful 
to apply patching on the larger images, since there was not a very 
relevant improvement, even for the smallest lesions. Note that this 
could be related to the fact that patches are less uniform than whole 
EFI images, since they are from different parts of the EFI image, in 
some occasions actually cropping structures such as the optic disk. 
This may make it more difficult to be accurate, as we noted in the 
form of more accuracy oscillations during the training process. 
Using the region-proposals based method we achieved 29.6% mean 
accuracy, far lower than either FCN or DeepLabV3 accuracies. 

f) as we have investigated in this work, metrics assume a huge 
importance for the quality of segmentation. We therefore 
suspected that careful use of metrics in the loss function of 
the crucial network training phase would have important 
consequence, and we have shown a dramatic improvement of the 
results for some of the worst segmented lesions by replacing the 
default training loss function by one that better reflects the degree 
of match between regions of classes (Tversky index). More work 
on loss functions and training details is crucial in the future.

5.  Conclusions and Future Work
In this experimental work we have built a set of state-of-the-art 
segmentation DCNN architectures to evaluate the quality of those 
architectures segmenting EFI images for Diabetic Retinopathy 
lesions. If those are capable of good results, then the approaches 
can be used off-the-shelf. We focused on the metrics and their 
correct interpretation in order to explain where and why the 
approaches fail. We highlighted that it is easy to misinterpret the 
results returned by metrics, since some metrics, although also 
conveying useful information, hid deficiencies. Then we have 
shown that all tested architectures have difficulty achieving high 
IoU, and explained the discrepancy between IoU and accuracy. 
The analysis of results revealed that the best approaches were 
acceptable (not very good) at identifying lesions as such, but at 
the expense of also labeling many background pixels as lesions, 
and in some cases also confounding between different lesions. 
Larger and more constant structures (background and optic disk) 
were better segmented, but accurate segmentation of the smaller 
and more variable lesions need improvements. Since metrics are 
so relevant for the assessment, we also hypothesized that they 
might have an important impact during the network training 
phase. Accordingly, by changing the training loss function 
we were able to dramatically improve the IoU of the worst 
segmented lesions. Future work should focus on improving the 
quality of segmentation of individual lesions, with further work 
on training loss functions, other architectural details of networks 
and possibly filtering out false positive lesions that are part of the 
background using some postprocessing. 
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