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Abstract

Various tools have been developed to predict B-cell 
epitopes. We proposed a multistrategy approach by 
integrating two ensemble learning techniques, namely 
bagging and meta-decision tree, with a threshold-based 
cost-sensitive method. By exploiting the synergy among 
multiple retrainable inductive learners, it directly learns 
a tree-like classification architecture from the data, and 
is not limited by a prespecified structure. In addition, 
we introduced a new three-dimensional sphere-based 
structural feature to improve the window-based linear 
features for increased residue description. We performed 
independent and cross-validation tests, and compared with 

previous ensemble meta-learners and state-of-the-art B-cell 
epitope prediction tools using bound-state and unbound-
state antigens. The results demonstrated the superior 
performance of the bagging meta-decision tree approach 
compared with single epitope predictors, and showed 
performance comparable to previous meta-learners. The 
new approach—requiring no predictions from other B-cell 
epitope tools—is more flexible and applicable than are 
previous meta-learners relying on specific pretrained B-cell 
epitope prediction tools. 
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1 Introduction
B-cell epitopes are specific regions on proteins 

recognized as antigen-binding sites by the antibodies of B 
cells. A detailed understanding of the interaction between 
antibodies and epitopes facilitates the development of 
diagnostics and therapeutics as well as rational design of 
preventive vaccines [1, 2, 3]. Therefore, generation of potent 
antibodies through reverse immunological approaches 
requires precise knowledge of epitopes. According to their 
structure and interaction with antibodies, epitopes can be 
classified as conformational and linear epitopes. A linear 
epitope is formed by a continuous sequence of amino acids, 
whereas a conformational epitope comprises discontinuous 
sections of the antigen’s primary sequence; the discontinuous 
sections are close together in the three-dimensional (3D) 
space and interact with an antibody together. Approximately 
10% of B-cell epitopes are linear, whereas the remaining 90% 
are conformational [4, 5].

The increasing availability of protein structures has 
facilitated the development of computational prediction 
tools by exploiting protein antigen structures. The 

following are some of the knowledge that has been used 
to elucidate these structures for epitope prediction: (a) 
spatial neighborhood information and a surface measure 
[6]; (b) local spatial context, accessible surface area (ASA) 
propensity and consolidated amino acid index [7]; and (c) 
the B-factor to detect atomic fluctuation [8]. Some studies 
have either adopted a hybrid approach combining structural 
and physicochemical features [9, 10], proposed a ensemble 
meta-learner incorporating consensus results from multiple 
prediction servers by using a voting mechanism [11], applied 
an ensemble of classifiers using various input features [12], 
or employed meta-learning based on stacking and cascade 
generalization [13].

In this paper, we propose the use of a meta-decision tree 
(MDT) approach [14] for B-cell epitope prediction. The 
previous meta-learners have relied on the classifications of 
other B-cell epitope prediction tools, which are trained and 
may not be retrained conveniently by the user from new 
data; nevertheless, the current proposed meta-classifier 
is independent of these types of pretrained B-cell epitope 
prediction servers. Consequently, our approach is more 
applicable and flexible than the previously developed meta-
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learning methods for B-cell epitope prediction. Our goal is not 
to develop a specific classifier for B-cell epitope prediction, 
but instead we intend to advocate the applicability of a generic 
improved ensemble meta learning approach over current B-cell 
epitope classifiers, and to show its competitive performance with 
those of other methods. To evaluate the new B-cell epitope meta-
learner, we performed cross-validation (CV) with previous meta-
classifiers and compared them with major epitope predictors 
for the same test data sets used previously for consistency. The 
results indicate that the proposed MDT approach outperforms 
commonly used single prediction servers considerably, as well 
as exhibiting performance comparable to previously developed 
meta-learners.

2 Materials and Methods

2.1  MDTs

MDTs [14] are used for meta-learning that applies multiple 
base classifiers to a single data set by exploiting the classification 
results of the base classifiers as a type of meta-knowledge. The 
structure of an MDT is identical to that of an ordinary decision 
tree, in that both have internal nodes and leaves, and have the 
same computational complexity O (m n log n) where m is the 
number of attributes and n is the number of examples [15]; 
however, in an MDT, the attributes associated with the internal 
nodes and the meaning indicated by the leaves differ from those 
of an ordinary decision tree.

In both MDT and ordinary decision trees, an internal node 
specifies a test on an attribute value. For an ordinary decision 
tree, the attribute selected for the internal node must be one of the 
base attributes used to describe the data instances, for instance, 
the hydrophilic scale. By contrast, the attribute at an internal 
node of an MDT is a meta-attribute derived from the output of 
the base classifiers. Notably, although the base classifiers used 
in an MDT are standard inductive learners (e.g., artificial neutral 
network and naïve Bayes classifier), they differ from the B-cell 
epitope prediction servers (e.g., SEPPA 2.0 [7] and DiscoTope 
2.0 [16] ) used as the base predictors by other meta-learning 
methods [11, 13]. Unlike these servers, the base classifiers used 
in MDTs can be retrained from new training data if required. As 
for the leaves, a leaf of an ordinary decision tree corresponds to 
a predicted class, whereas that of an MDT specifies a particular 
base classifier for class prediction. Figure 1 illustrates examples 
of an ordinary decision tree and an MDT. The ordinary decision 
tree in Figure 1A includes three internal nodes and four leaf 
nodes; each internal node specifies a test on a particular base 
attribute value [e.g., Feature1 ≤ 0.75 (or > 0.75)], and each leaf 
indicates the predicted class (e.g., C1). The MDT in Figure 1B 
also has three internal nodes and four leaf nodes; unlike in the 
ordinary decision tree, each internal node in this MDT specifies 
a test on a particular meta-attribute derived from the output of 

a base classifier [e.g., metaF1(CL1) in Fig 1B], and rather 
than predicting the class, each leaf node predicts the base 
classifier most suitable for classification (e.g., CL1). The 
advantage of an MDT is that it combines and exploits the 
classifications from multiple base classifiers to improve the 
accuracy of the final prediction.

2.2  Base Attributes and Meta-attributes

In the framework of machine learning, we translate 
an epitope prediction problem into an inductive learning 
problem. With a given training set of antigens with known 
epitope and nonepitope regions, the goal is to learn a classifier 
from a training set of antigens and apply the learned classifier 
to novel antigens for epitope detection.

To describe each amino acid on a protein antigen, 
we first adopted 14 base attributes: epitope propensity, 
secondary structure, residue accessibility, B factor, solvent-
excluded surfaces, solvent-accessible surfaces, protein 
chain flexibility, hydrophilicity, position-specific scoring 
matrix (PSSM), atom volume, accessible surface area, side 
chain polarity, hydropathy index, and antigenic propensity. 
Descriptions and references of the base attributes have been 
reported by Hu et al. [13]. In addition, we considered five 
other physicochemical properties: surface probability [17], 
turns [18], exposed surface [19], and two types of polarities 
defined by Ponnuswamy et al. [20] and Grantham [21]. 
All the attributes were derived from the protein sequences 
or from the structural information provided by PDB. To 
keep the consistency, we prepared the attributes and their 
values for the training and testing on MDT in the same way 
without any discrepancy. Furthermore, we extended the 
idea of Ansari and Raghava [22] and created the 3D sphere-
based attributes from the base attributes; the authors only 
considered amino acids in a linear window to generate one-
dimensional (1D) window-based attributes. By contrast, we 
considered the amino acids in a constrained 3D spherical 
space and analyzed the values of different base attributes. 
To generate a 3D-based attribute value for an amino acid, 
we first created a surrounding sphere with its central carbon 
atom Cα as the center. We then computed the average value 
for a base attribute of all the amino acids within this 3D 
sphere and used the average as the 3D sphere-based attribute 
value for the center amino acid. Figure 2 illustrates a 3D 
spherical neighborhood for an amino acid. Because 90% 

(A) An ordinary decision tree, (B) A meta decision tree.
Figure 1: Sample ordinary decision tree and MDT.
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of the B-cell epitopes are conformational (discontinuous), 
3D sphere-based attributes are more informative than 1D 
window-based attributes. By varying the radius of the sphere, 
we could define different 3D sphere-based attributes. With 
the base and 3D sphere-based attributes, we represented 
the protein antigens in the training set and trained the base 
classifiers from the base training data set.

A meta-attribute is defined over the output of the trained 
base classifiers. We used RFs [23], SVMs [24], C4.5 [25], 
k-NN [26], PART [27], BN [28], JRip [29], and VP [30] as 
the base classifiers. Furthermore, the majority vote of the 
base classifiers was also included as a base classification. 
According to Todorovski and Dzeroski [14], we calculated 
the properties of the class probability distributions predicted 
by the base classifiers, reflecting the certainty and confidence 
of the predictions. Here, we defined three meta-attributes: 
epi_prob(x,B), entropy(x,B), and vote_epi_prop(x), where x 
is a data instance and B a base classifier. The meta-attribute 
epi_prob(x,B) is the probability of epitope predicted by the 
base classifier B for the amino acid x. The meta-attribute 
entropy(x,B) is the entropy of the class probability distribution 
predicted by the base classifier B for the amino acid x. The 
meta-attribute vote_epi_prop(x) is the proportion of the 
epitope class predicted by all base classifiers for the amino 
acid x. These meta-attributes reflect the certainty of the base 
classifier in predicting the class, and they characterize the 
confidence variedly.

We computed the meta-attribute values for each data 
instance, namely the amino acid, on the basis of the output 
of the base classifiers and combined them to form a meta 
training data set. We then trained an MDT from a training 
set of data described by the meta-attributes. The metadata 
preparation process is illustrated in Figure 3. The meta 
training data can be obtained offline and independently of 
MDT, and consequently do not affect the training of MDT 
directly.

2.3  MDT Construction

MDT construction is identical to that of an ordinary 
decision tree. It involves a greedy, top-down, recursive search 
for the most suitable decision tree from a training data set. 
The core algorithm selects the most suitable attribute for an 
internal node and partitions the data available at the node 
into subsets according to the attribute values to create the 
descending nodes. This process is repeated for the data 
associated with each descendant to select the next attribute 
to grow the tree until some stopping criterion is satisfied.

Rather than employing the measures of impurity 
reduction commonly used for ordinary decision trees, such 
as information gain, gain ratio [25], and Gini [31], the focus 

Figure 2: Two-layer 3D spherical neighborhood. A 3D sphere-based 
structural feature is defined for an amino acid (AA) based on its 3D 
spherical neighborhood specified by radius, r. The center of the sphere 
is the Cα of AA, and every other AA whose C is within the distance of r 
is considered a neighbor of AA. By varying r, we can specify different 3D 
spherical neighborhoods to define different 3D sphere-based structural 
features.

Figure 3: Metadata preparation process.Base training data Tr are divided 
into k folds. In each iteration, (k-1) folds of Tr are fed to all the base 
classifiers for training and the trained base classifiers are tested on the 
remaining fold to obtain the predictions. After repeating the same 
procedure k times, the predictions of the entire Tr are obtained from 
all base classifiers. To prepare meta training data, for each data instance 
x, the values of its three meta-attributes, epi_prob(x,Bi), entropy(x,Bi), 
and vote_epi_prop(x), are computed; these values together form the meta 
training data. Meta test data are prepared similarly.
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of MDTs is the accuracy of each base classifier in predicting the 
data instance S available at an internal node. We defined the new 
information measure as follows:

( ) 1 ( , )∈= − B Baseinfo S max  Accuracy B S                     (1)
Where, B is a base classifier, Base is the set of all base 

classifiers, S is the data available at an internal node, and Accuracy 
is the classification accuracy of B on S. We selected the attribute 
that maximized the decrease in info of the subsets of S after 
the partition according to the values of the selected attribute 
compared with the original info of S. We repeated the same 
selection–partition process to grow the tree until the accuracy of 
some base classifier was 100% on the current subset or the size of 
the current subset was lower than a prespecified threshold. The 
classifier at the leaf node with the maximum accuracy was used to 
predict new instances after the tree grew completely.

2.4  Bagging and Decision Threshold

Three factors affect the performance of a predictor: (a) training 
d1ata, (b) representation bias, and (c) search bias. First, learning 
algorithms for predictors may produce different hypotheses from 
a small data set, and each has the same prediction accuracy on 
the same training data. Nevertheless, no single hypothesis can 
cover the entirety, or a sufficiently large portion, of the hypothesis 
space. Consequently, the overfitting problem can arise. Second, 
in most real-world applications, the true target concept may not 
be represented by any single hypothesis in the hypothesis space 
because of the limitations of representations, constraining the 
applicability of the learned hypothesis. Third, most learning 
algorithms adopt a local search strategy to prevent computational 
explosion during learning (e.g. the commonly used greedy 
partition rule for growing a decision tree); however, greedy local 
search of any form causes higher variance and can be stuck in 
local optima, thus failing to identify the true target.

An approach applicable for mitigating the aforementioned 
problems is ensemble learning. Various forms of ensemble 
learning have been developed. To further enhance the immunity 
of MDTs to the preceding problems, we applied a bagging-like 
strategy [32] to MDTs. By constructing an MDT ensemble from 
multiple random samples, we assumed that the final prediction 
based on the predictions of the MDTs ensemble can further 
reduce the variance among different MDTs, providing a more 
accurate approximation to the true target. 

Most learning algorithms assume balanced class distributions 
and equal misclassification costs, which limit their applicability 
to epitope prediction because the B-cell epitopes are severely 
underrepresented. We adopted the undersampling strategy 
to decrease the number of nonepitopes in the training data 
to mitigate the class imbalance problem with B-cell epitope 
prediction. The appropriate epitope-to-nonepitope ratio for 
undersampling was first determined by either CV on training 

data or prior knowledge of class distribution in test data. We 
then performed multiple undersampling runs according to 
the selected ratio to create multiple random data sets to train 
an MDT ensemble. 

We computed the probability for an amino acid of being 
epitope or nonepitope on the basis of the predictions of the 
MDTs trained from the random samples. By using m MDTs, 
we defined the scores of epitope, ScoreE, and nonepitope, 
ScoreN, for an amino acid AA as follows:

= =
= α ⋅ ⋅ − + − α ⋅ ⋅  ∑ ∑m

1 1
0.5 (1 ) m

E i i i ii i
Score w e w e  (2)

= =
= α ⋅ ⋅ − + − α ⋅ ⋅  ∑ ∑m

1 1
0.5 (1 ) m

N i i i ii i
Score w n w n      (3)

In equations (2) and (3), ei (or ni) is the probability of 
being an epitope (or nonepitope) according to the prediction 
of the ith MDT. To predict the class of AA, we traversed each 
MDT to a leaf that specified a base classifier to make the 
prediction. We obtained the proportion of a base classifier 
used to make predictions from the m MDTs and denoted 
the proportion for each base classifier by using wi. A higher 
wi value indicates a stronger weight of that base classifier 
exerted on the score; when wi is set to 1, all the base classifiers 
are treated equally. The first term in equations (2) and (3) 
considers only the count of classifications by the m MDTs, 
whereas the second term considers the class probabilities. 
We used a control parameter α to balance the effects of the 
two scoring mechanisms, and its value could be determined 
through CV. We defined the probability for the amino acid 
AA of being epitope or nonepitope as follows:

( ) =
+

N
N

E N

ScoreP AA
Score Score                              (4)

( ) =
+

N
N

E N

ScoreP AA
Score Score                                 (5)

To appropriately address the imbalanced class distribution 
in B-cell epitopes, we also set a probability threshold for the 
final classification as follows:

( ) ( )
( )

θ

θ

 − <= 
≥

,
        ,

E

E

non epitope   P AA
Class AA

epitope   P AA                   (6)

Where θ is a threshold. A carefully selected  on the basis of 
CV or prior knowledge warrants a reasonable performance 
of the class-sensitive bagging MDT approach. Figure 4 
illustrates the entire flow of this system.

2.5  Data Sets and Performance Measures

We collected the training and test data used in DiscoTope 
2.0 [16], SEPPA 2.0 [7], Bpredictor [33], ElliPro [34], 
CBTOPE [22], EPMeta [10], and B-cell meta-classifiers [13] 
and by Zhao et al. [35]; we then combined these with the data 
in the Epitome database [36] and Immune Epitope Database 
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(IEDB) [37] to prepare the data set for the comparative study. 
After removing the duplicates and filtering out the antigens 
without epitope residues annotated in either Epitope 
Information or B cell Assay Information in the IEDB, we 
obtained a total of 363 bound-state antigens. Because the 
epitope predictors used in our study were web-based servers 
or software packages that could not be retrained using 
different training data, to conduct a consistent and unbiased 
comparative analysis of the prediction performances of these 
predictors, we created an independent data set of antigens 
with known epitopes. We divided this data set of 363 protein 
antigens into a test data set and a training data set. To ensure 
fair comparison between different prediction methods, we 
selected 18 antigens that were not used before to train any 
of the predictors in comparison for testing, and used the 
remaining 345 antigens that were used previously to train 
these predictors for MDT training. Table 1 lists the total 363 
antigens, and Table 2 lists the 18 test antigens.

While most of the studies of epitope prediction and 
feature analysis are focused on bound-state antigen structures 
[6, 7, 16, 34, 35], epitopes in bound states show different 
characteristics and reveal more binding information than 
unbound epitopes [38], which can raise two issues in epitope 
prediction. One is that explicit binding information in the 
bound-state structures can bias the prediction performance; 
the second is that an antigen possibly bound by multiple 
antibodies can cause more false negatives because only the 
epitope to the antibody in the bound structure is considered 
a true epitope, and all remaining epitopes to other antibodies 
are labeled as nonepitopes. We adopted a set of unbound-
state antigens, listed in Table 3, recently constructed and 
annotated by Ren et al. [39] to evaluate MDT’s performance 
for unbound-state epitope prediction, and compare it with 
other epitope predictors. 

We evaluated prediction performances by using several 
measures: TPR (i.e., sensitivity), FPR, precision (i.e., 
positive predictive value), percentage accuracy, F-score, 

and MCC. Table 4 lists the definitions of these measures. In 
general, correlation exists between the TPR and FPR produced 
by a predictor. Typically, the FPR increases with the TPR. We 
prepared ROC curves to summarize the results on the different 
thresholds. 

2.6  Correlation Analysis of Base Classifiers and 
Ablation Analysis of Base Attributes

An MDT can be constructed from an arbitrary number of 
different base classifiers, and its overall performance depends 
on these learning components. If the learning components 
have complementary predictive strengths, an MDT can search 
various hypotheses in the hypothesis space and provide superior 
generalizations for novel test data to those of a single-component 
learner. We used the ARI [40] to measure the strength of the 
relationship between the predictions produced by two base 
classifiers. Although the ARI was initially designed to measure 
agreement between two clustering results, in our case, a higher 
ARI value could indicate greater agreement between the two 
classifiers. If P is the partition of the amino acids into epitopes 
and nonepitopes for a given data set of antigens, according to the 
predictions of the classifier A, and Q is the partition produced 
by the classifier B, a lower ARI value between P and Q suggests 
a higher probability that the two classifiers have complementary 
strengths. After evaluating several different indices for the 
measurement of the agreement between two partitions, Milligan 
and Cooper [41] recommended the use of the ARI. Therefore, 
in this study, we adopted the ARI for evaluating the correlation 
between the classifiers. The results from the ARI analysis provided 
a basis for selecting the appropriate base classifiers in MDTs.

In addition to assessing the complementary prediction 
strengths of the base classifiers by using the ARI, we conducted an 
ablation analysis of different base attribute types to measure their 
contribution to the MDT. We classified the base attributes into 
three categories: (a) sequence, (b) structure, and (c) 3D sphere-
based. We compared the relevance of the three categories of base 
attributes to MDT by their removal or addition and estimated 
their effects on the meta-classification by the amount of decrease 
or increase in prediction performance.

3 Results
To keep the consistency in evaluating MDT’s performances, 

we followed the same protocol to prepare the attributes and 
their values for MDT’s training as well as its testing without any 
discrepancy. All the attributes were derived from the protein 
sequences or from the structural information provided by PDB.

3.1  Prediction Correlations Between Base Classifiers

For a meta-learning method to perform effectively, the base 
classifiers must have complementary predictive capabilities, Figure 4: System flow of bagging MDT.
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1A2Y_C 1ADQ_A 1AFV_A 1AHW_C 1AHW_F 1AR1_B 1BGX_T 1BJ1_V 1BJ1_W 1BQL_Y
1BVK_C 1BVK_F 1BZQ_A 1C08_C 1CIC_C 1CIC_D 1CZ8_V 1CZ8_W 1DQJ_C 1DVF_A
1DVF_B 1DZB_X 1DZB_Y 1E6J_P 1EGJ_A 1EO8_A 1EZV_E 1FBI_X 1FDL_Y 1FJ1_F
1FNS_A 1FSK_A 1FSK_D 1FSK_G 1FSK_J 1G7H_C 1G7I_C 1G7J_C 1G7L_C 1G7M_C
1G9M_G 1G9N_G 1GC1_G 1HYS_A 1HYS_B 1I9R_A 1IAI_H 1IAI_L 1IC4_Y 1IC5_Y
1IC7_Y 1J1O_Y 1J1P_Y 1J1X_Y 1J5O_B 1JHL_A 1JPS_T 1JRH_I 1JTO_L 1JTO_M
1JTP_L 1JTP_M 1JTT_L 1KB5_A 1KB9_E 1KEN_A 1KIP_C 1KIQ_C 1KIR_C 1KXQ_A
1KXT_A 1KXV_A 1KYO_E 1LK3_A 1LK3_B 1MEL_L 1MEL_M 1MHP_B 1MLC_E 1MLC_F
1N5Y_B 1N6Q_B 1N8Z_C 1NBY_C 1NBZ_C 1NDG_C 1NDM_C 1NSN_S 1OAK_A 1OAZ_A
1OP9_B 1ORQ_C 1ORS_C 1OSP_O 1OTS_A 1OTS_B 1OTT_A 1OTT_B 1OTU_A 1OTU_B
1P2C_C 1P84_E 1PG7_L 1PKQ_J 1QFW_A 1QLE_B 1R0A_B 1R3I_C 1R3J_C 1R3K_C
1R3L_C 1RI8_B 1RJC_B 1RJL_C 1RVF_1 1RVF_2 1RVF_3 1RZJ_G 1S78_B 1SQ2_L
1T6V_L 1T6V_M 1TPX_A 1TQB_A 1TQC_A 1TZH_V 1TZH_W 1TZI_V 1UA6_Y 1UAC_Y
1UJ3_C 1V7M_V 1VFB_C 1W72_A 1WEJ_F 1XGP_C 1XGQ_C 1XGR_C 1XGT_C 1XGU_C
1XIW_A 1XIW_E 1YJD_C 1YQV_Y 1YY9_A 1YYM_G 1Z3G_A 1Z3G_B 1ZA3_R 1ZTX_E
1ZV5_L 2AEP_A 2ARJ_Q 2B2X_A 2BDN_A 2BOB_C 2BOC_C 2DD8_S 2DQC_Y 2DQD_Y
2DQE_Y 2DQF_C 2DQF_F 2DQG_Y 2DQH_Y 2DQI_Y 2DQJ_Y 2DWD_C 2DWE_C 2EIZ_C
2EKS_C 2FJG_V 2FJG_W 2GHW_A 2H9G_R 2H9G_S 2HMI_B 2I25_L 2I25_M 2I26_L
2I26_M 2I26_Q 2I60_G 2I60_P 2I9L_I 2IFF_Y 2ITD_C 2J4W_D 2J5L_A 2JEL_P
2NXY_A 2NXZ_A 2NY0_A 2NY1_A 2NY2_A 2NY3_A 2NY4_A 2NY5_G 2NY6_A 2NY7_G
2OZ4_A 2P42_A 2P42_C 2P43_A 2P44_A 2P45_A 2P46_A 2P46_C 2P47_A 2P48_A
2P49_A 2P4A_A 2P4A_C 2Q8A_A 2Q8B_A 2QQK_A 2QQN_A 2R29_A 2R4R_A 2R4S_A
2R56_A 2UZI_R 2VH5_R 2VIR_C 2VIS_C 2VIT_C 2VXQ_A 2VXS_A 2VXS_B 2VXT_I
2W9E_A 2XQB_A 2XQY_A 2XQY_E 2XTJ_A 2XWT_C 2YBR_C 2YBR_F 2YBR_I 2YC1_C
2YC1_F 2YSS_C 2ZJS_Y 2ZNW_Y 2ZNW_Z 2ZNX_Y 2ZNX_Z 2ZUQ_A 3A67_Y 3A6B_Y
3A6C_Y 3B9K_B 3BDY_V 3BE1_A 3BGF_A 3BGF_S 3BQU_B 3BSZ_E 3BSZ_F 3C09_A
3CVH_A 3CVH_M 3D85_C 3D9A_C 3DVG_Y 3DVN_V 3EO1_C 3EO1_F 3FMG_A 3G04_C
3G6D_A 3GB7_C 3GBM_B 3GBN_B 3GI8_C 3GI9_C 3GRW_A 3H42_A 3H42_B 3HFM_Y
3HI6_A 3HI6_B 3HMX_A 3I50_E 3IDX_G 3IGA_C 3J1S_A 3K3Q_B 3K3Q_C 3KJ4_A
3KJ6_A 3KR3_D 3L5W_I 3L5X_A 3LD8_A 3LDB_A 3LEV_A 3LH2_S 3LH2_T 3LH2_U
3LH2_V 3LHP_S 3LHP_T 3MA9_A 3MJ9_A 3MXW_A 3NGB_G 3NH7_A 3O0R_B 3O0R_C
3O2D_A 3PGF_A 3Q3G_E 3QA3_E 3QA3_G 3QA3_I 3QA3_L 3QWO_P 3R1G_B 3RU8_X
3RVV_A 3RVW_A 3RVX_A 3SDY_A 3SDY_B 3SE8_G 3SE9_G 3SKJ_E 3SKJ_F 3SOB_B
3SQO_A 3T2N_A 3THM_F 3TJE_F 3U2S_C 3U2S_G 3U30_D 3UC0_A 3UC0_B 3UX9_A
3UX9_C 3VG9_A 4AEI_A 4AEI_B 4AEI_C 4AL8_C 4ALA_C 4DGI_A 4DKE_A 4DKE_B
4DKF_A 4DKF_B 4DN4_M 4DTG_K 4ETQ_C 4F2M_E 4F2M_F 4F3F_C 4FQI_B 4GMS_A
4GMS_C 4GMS_E 4HKX_E

Table 1: Data set of 363 protein antigens.

1BZQ_A 1KXT_A 1KXV_A 1W72_A 2I9L_I 2J4W_D 2J5L_A 2OZ4_A 2R4R_A 2R4S_A
2ZJS_Y 3B9K_B 3BQU_B 3BSZ_E 3BSZ_F 3DVN_V 3KJ4_A 3KJ6_A

Table 2: Independent test data set of 18 protein antigens.

3TGT 4GXX 4OIE 2I5V 1J95 2QTW 1D7P 1B1I 1YG9
4I53 4M4Y 2C36 2G7C 1JVM 1KF3 1F45 1DOK 1FCQ
4JPJ 1F8D 4OSN 1POH 1DKK 1ZVM 2ILK 1KEX 1BV1
4DKP 3NN9 2GHV 1UB4 1HHL 3OIW 2NVH 3M1N 3PX8
3O3X 4NN9 3K7B 1WHO 1JSE 4KZN 1MF7 3MJ6
4IPY 3IRC 4E9O 1I4M 2NWD 4EFV 1MJN 3NCL
3NTE 3VTT 3EJC 3Q27 2VB1 1BOY 2ICA 3S26
1HGH 3WE1 1W8K 4NX7 1HX0 1ATZ 3FCU 4GNY
3KU3 3GGQ 1Z40 3KVD 3ZKG 1AUQ 2YXF 1AHO
3ZP0 2HG0 3WKL 1EY0 3Q6O 1IJB 3O1Y 3D6S
4FNK 2P5P 2WK0 1IGD 2GBC 1BIO 4JNI 3F5V

Table 3: Data set of unbound-state antigens.
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which can be reflected by relatively low correlation among 
their predictions. We selected eight base classifiers to 
construct an MDT. They are random forests (RFs) [23], 
support vector machines (SVMs) [24], C4.5 [25], k-nearest 
neighbors (k-NN) [26], PART [27], Bayes Net (BN) [28], 
JRip [29] and Voted Perceptron (VP) [30]. 

We measured the correlation between two base classifiers 
by the adjusted Rand index (ARI) [40] of their classifications. 
Table 5 lists the ARI values of all pairs of the base classifiers 
for an independent test data set of 18 antigens (see Materials 
and methods). The mean ± standard deviation ARI values 
for the test data sets were 0.238 ± 0.084; the ARI value is 
relatively low, indicating a relatively weak correlation among 
the base classifiers.

The 18-antigen independent test data set contained a 
total of 243 epitope and 3,760 nonepitope residues. A base 
classifier was trained using the training sets of 345 antigens; 
for the test set, it classified a protein residue as an epitope 
or a nonepitope. For each epitope and nonepitope residue, 
we counted the number of base tools that correctly classified 
the residue as epitope or nonepitope. Figure 5 presents the 
distributions of epitope and nonepitope residues for all test 
proteins, according to the number of base tools with the 
same prediction, for indicating the degree of agreement in 
classification among the base tools. For instance, as shown 
in Fig 5, we observed only 1.6% of the epitope residues were 
correctly and unanimously predicted by all base classifiers, 
whereas 32.5% of the epitopes could not be detected by any 
base predictor. By contrast, more than 65% of the epitope 
residues were correctly classified by 1–7 base predictors. 
Compared with epitopes, a markedly higher percentage of 
nonepitopes was correctly classified by all base predictors. 
Despite the higher percentage of unanimous predictions, 
more than 30% of the nonepitopes were classified variedly, 
and they were correctly predicted by 1–7 base classifiers. 
Taken together, these results indicate that base classifiers 
do not always agree when predicting epitopes and that 
they may have complementary strengths, suggesting that a 

meta-learner built based on these base learners can demonstrate 
synergy in their predictive capabilities.

3.2  Independent Test of MDT and other B-cell 
Epitope predictors

Five representative conformational epitope predictors [7, 16, 
22, 33, 34], and three meta-classifiers [11, 13] were considered for 
comparison in the test. We compared MDT with current B-cell 
epitope predictors on a test data set of 18 antigens selected from 
a total of 363 bound antigens that were previously used to train 
and test epitope prediction tools (see Materials and methods). 
We did not perform k-fold cross-validation (CV) based on the 
363 antigens because some epitope predictors, such as DiscoTope 
2.0 and SEPPA 2.0 in this comparative study, had been pretrained 
using different antigens from the 363 antigens, and the antigens 
previously used for training can overlap the test data folds in the 
iterative process of CV. This violates the principles of CV, and is 
likely to cause overestimated performance. To avoid the bias, we 
performed an independent test instead.

We trained a bagging MDT model from 354 antigens, which 
were used previously to train the predictors in comparison, and 
compared its performance with the performances of other B-cell 
epitope predictors for the same test set of 18 antigens. The 18 
test antigens were not used before to train any of the predictors 
in comparison to ensure a fair comparison. For each predictor 
in comparison, we selected the parameter values of their best-
performing models for the training data set individually; these 
values were used in the tests to ensure fair comparison. Table 6 
shows that the meta-classifiers, cascade, stacking, and bagging 
MDT, all considerably outperformed the five representative 
conformational epitope predictors for ACC, F-score, and MCC. 
The results revealed that DiscoTope 2.0 [16], ElliPro [34], and 
Bpredictor [33] presented high true positive rates (TPRs) of 
prediction; nevertheless, they also had high false positive rates 
(FPRs). By contrast, SEPPA 2.0 [7] and CBTOPE [22] showed 
lower TPRs as well as FPRs. Compared with these single 
predictors, the meta-classifiers, cascade, stacking, and bagging 
MDT led to a more favorable balance between TPRs and FPRs, 
and consequently demonstrated a higher F-score and MCC. 
Figure 6 shows their ROC curves, indicating the trade-off 
between the amounts of true positives (TP) and false positives 
(FP) produced by the classifiers. In general, these observations 
suggest that the performance of bagging MDT is superior to that 
of other current B-cell epitope prediction methods. In addition, 
the bagging MDT approach is comparable with previously 
reported epitope meta-classifiers, such as EPMeta [11], cascade, 
and stacking [13], while unlike previous meta-classifiers, it does 
not depend on the prediction output of specific pretrained B-cell 
epitope predictors such as DiscoTope 2.0 [16] and SEPPA 2.0 
[7]. Notably, when bagging MDT also employed the output of 
the eight prediction tools, e.g. SEPPA 2.0, as used in cascade and 
stacking [13], it produced the highest performance with regard 
to ACC, F-score, and MCC, as presented in the final row of Table 6.

Performance 
Measure Definition

TPRa TP/(TP+FN)
FPR FP/(FP+TN)

Precisionb TP/(TP+FP)
Accuracy (TP+TN)/(TP+TN+FP+FN)
F-score 2×TPR×Precision/(TPR+Precision)

MCC
× − ×

+ + + +

TP TN FP FN
(TP FP)(TP FN)(TN FP)(TN FN)

Table 4: Definitions of performance measures.

aTPR is also known as sensitivity or recall.
bPrecision is also known as positive predictive value.
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18 Ags C4.5 KNN Voted
Perceptron PART Random

Forest Bayes Net JRip

KNN 0.198 - - - - - -
Voted
Perceptron 0.189 0.256 - - - - -

PART 0.290 0.259 0.282 - - - -
Random
Forest 0.157 0.245 0.166 0.164 - - -

BayesNet 0.232 0.120 0.126 0.240 0.050 - -
JRip 0.251 0.239 0.281 0.306 0.237 0.191 -
SVM 0.248 0.359 0.382 0.386 0.361 0.125 0.335

Table 5: Correlation analysis of base classifiers based on 18 antigens.

Figure 5: Pie charts of classification agreement. Pie charts showing the degree of agreement among base tools in epitope prediction of 18 test 
protein antigens. Distributions of the counts of (A) epitope and (B) nonepitope residues, according to the number of base tools with the same 
prediction.

aBagging MDT used only 19 base attributes and no 3D sphere-based attributes. 
bBagging MDT used 19 base attributes and the derived 3D sphere-based attributes.
cBagging MDT used 19 base attributes, the derived 3D sphere-based attributes, as well as the output of the eight prediction tools, e.g. SEPPA, 
used in Cascade and Stacking.

Classifier TPR FPR PPV ACC F-score MCC
SEPPA 0.140 0.047 0.162 0.904 0.150 0.100
DiscoTope 0.959 0.756 0.076 0.287 0.140 0.115
ElliPro 0.807 0.558 0.085 0.464 0.155 0.120
Bpredictor 0.856 0.634 0.080 0.396 0.147 0.111
CBTOPE 0.029 0.001 0.636 0.940 0.055 0.127
EPMETA 0.757 0.522 0.086 0.495 0.154 0.112
Cascade 0.222 0.016 0.466 0.937 0.301 0.293
Stacking 0.243 0.015 0.513 0.940 0.330 0.326
F19_BaggingMDT_BaseOnlya 0.148 0.017 0.356 0.932 0.209 0.199
F19_BaggingMDT_plus3Dsphereb 0.255 0.019 0.466 0.937 0.330 0.315
F19_BaggingMDT_plus3Dsphere_8Tc 0.272 0.014 0.555 0.943 0.365 0.362

Table 6: Results of independent test.

3.3  Individual Comparisons Between MDT and 
Other B-cell Epitope Predictors

In addition to the tests of bagging MDT and the commonly 
used epitope predictors on the same test data, we compared 

bagging MDT with the epitope predictors separately by using 
different data sets. We tested six representative epitope predictors: 
SEPPA 2.0 [7], DiscoTope 2.0 [16], ElliPro [34], Bpredictor [33], 
CBTOPE [22], and EPMeta [11]. All had been trained and tested 
by different data sets. In each test, we selected one epitope predictor 
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Figure 6: ROC curves of predictors. ROC curves of epitope predictors and meta-classifiers based on the test data set of 18 antigens.

for comparison. To make a fair and consistent comparison, we 
only trained and tested bagging MDT on the same data sets that 
had been used specifically to train and test the predictor selected 
for comparison. The results of the individual comparisons are 
presented in Table 7. Bagging MDT considerably outperformed 
SEPPA 2.0, ElliPro, Bpredictor, CBTOPE, and EPMeta in the 
individual tests except DiscoTope 2.0. As shown in Table 7, in 
the individual comparison with DiscoTope 2.0, bagging MDT 
was overconservative, as indicated by its significantly lower TPR 
and FPR, which caused weaker performance than DiscoTope 
2.0. In general, these results demonstrate that the synergy in 
multiple base classifier effects in MDT can result in performance 
superior to other current epitope predictors. Furthermore, unlike 
previous meta-classifiers, the new bagging MDT approach does 
not require the prediction output of other epitope predictors [11] 
or a prespecified classification architecture [13], and is thus more 
flexible and applicable. 

3.4  Evaluation of MDT based on Unbound-State 
Antigens

In addition to the independent test for bound-state antigens, 
we compared MDT with other epitope predictors by a set of 
unbound-state antigens. To maintain the consistency with the 
previous study in [39], we used the same unbound-state antigen 
data and also conducted antigen-based 10-fold CV by dividing 
the same unbound-state structures into 10 subsets randomly. The 
overall performance was used as the average of the results obtained 
from all iterations of three 10-fold CVs. The experimental results 
in Table 8 demonstrated that MDT outperformed the structure-
based predictors DiscoTope 2.0, SEPPA 2.0 and ElliPro markedly 
for MCC, and showed comparable performance in F-score. Table 
8 also showed that MDT was competitive with a two-stage SVM-

based unbound epitope predictor PUPre [39]. In addition, the 
significantly higher precision and lower recall of MDT suggested 
that MDT was more conservative than the other tools for 
prediction of epitopes in unbound-state antigens.

3.5  Ablation Analysis

An ablation study provides insight into the effects of base 
learners on the prediction performance of a meta classifier. 
However, the time required for a complete ablation analysis 
increases exponentially with the number of base learners. To 
avoid computational explosion, following [13], we adopted a 
greedy approach for the ablation study. We used the same 94 
antigens in [13] for training, and tested the trained classifiers on 
an independent set of 69 antigens. 

We adopted two greedy iterative approaches, backward 
elimination and forward selection, to evaluate the contributions 
of available base classifiers. The greedy iterative backward 
elimination approach started with the maximal MDT built 
upon all available base learners. In each iteration, we identified 
the base classifier in MDT such that the performance of MDT 
decreased the most after the removal of this classifier. By contrast, 
the greedy iterative forward selection approach started with the 
minimal MDT built without any base classifier. In each iteration, 
we identified the base classifier available such that the addition 
of this classifier improved MDT’s performance the most. We 
compared the relevance of the base classifier to MDT by the order 
of their removal or addition, and estimated their effects on MDT 
by the amount of decrease or increase in prediction performance. 
We show the results in Tables 9 and 10.

4 Conclusion
Numerous approaches can be used for predicting linear and 

conformational B-cell epitopes. Of these, the approach based 
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aBagging MDT was trained and tested using the same data sets used specifically to train and test SEPPA 2.0 (or DiscoTope 2.0), excluding the 
antigens with missing feature values. All classifiers were tested on the same test data to conduct a consistent comparison.
bElliPro only provided the test data but no training data. Consequently, we trained bagging MDT from our training data used in this study, 
excluding the antigens in ElliPro’s test data set. We compared bagging MDT and ElliPro on the same test data previously used by ElliPro, 
excluding the antigens with missing feature values, to maintain consistency. 
cBagging MDT was trained on the same data previously used to train Bpredictor, excluding the antigens with missing feature values. Although 
Bpredictor provided its original test data set, the data lacked the epitope residues annotated in the IEDB. Alternatively, from the 363 antigens 
in this study we selected 122 antigens that were not used for Bpredictor training as the test data.
dBagging MDT was trained and tested using the 60% nonredundant benchmark dataset previously used to evaluate CBTOPE, excluding the 
antigens with missing feature values. Following CBTOPE, we adopted 5-fold CV to compare the performances. We selected the parameter value 
of the best-performing CBTOPE on the training data set. All the classifiers, including CBTOPE, were tested on the same test data for consistent 
comparison. 
eEPMeta only provided the training data but no test data. Consequently, we trained bagging MDT from the same training data used previously 
to train EPMeta, excluding the antigens with missing feature values, and performed a comparison between bagging MDT and EPMeta on the 
same test data set of 149 antigens selected from the 363 antigens in this study.

Classifier TPR FPR PPV ACC F-score MCC
SEPPAa 0.138 0.040 0.161 0.916 0.148 0.105

F19_BaggingMDT_plus3Dsphere 0.277 0.044 0.260 0.920 0.268 0.226
DiscoTopea 0.891 0.589 0.091 0.441 0.166 0.149

F19_BaggingMDT_plus3Dsphere 0.045 0.006 0.350 0.935 0.080 0.107
ElliProb 0.740 0.519 0.125 0.505 0.214 0.128

F19_BaggingMDT_plus3Dsphere 0.606 0.025 0.707 0.941 0.653 0.623
Bpredictor Ts=122c 0.093 0.049 0.125 0.892 0.107 0.051

F19_BaggingMDT_plus3Dsphere 0.486 0.028 0.566 0.938 0.523 0.492
CBTOPEd 0.647 0.164 0.236 0.823 0.346 0.314

F19_BaggingMDT_plus3Dsphere 0.785 0.012 0.834 0.973 0.809 0.795
EPMeta Ts=149e 0.871 0.579 0.096 0.450 0.173 0.148

F19_BaggingMDT_plus3Dsphere 0.343 0.021 0.533 0.937 0.417 0.396

Table 7: Results of individual comparisons.

*Classifiers tested in iterative backward ablation analysis. The first classifier in the first row is the MDT that employs all of the 8 base classifiers. 
The remaining classifiers are listed in the order in which they were selected to be removed iteratively from MDT for ablation study. ‘\’ indicates 
“removed.” For example, the second classifier is the MDT after SVM was removed, and the third classifier is the MDT after SVM and Voted 
Perceptron were removed from MDT. The MDT in the final row applied only Bayes Net after C4.5 was removed.

Classifier Recall Precision F-score MCC
SEPPA 0.48 0.16 0.24 0.14
DiscoTope 0.26 0.17 0.21 0.11
ElliPro 0.68 0.12 0.20 0.08
PUPre 0.71 0.18 0.28 0.21
F19_baggingMDT_plus3Dspherea 0.13 0.53 0.21 0.23

aBagging MDT used 19 base attributes and the derived 3D sphere-based attributes.

Table 8: Results of cross-validation on unbound-state antigens.

MDT* TPR FPR PPV ACC F-score MCC

F19_BaggingMDT_plus3Dsphere 0.463 0.011 0.791 0.947 0.584 0.581

\ SVM 0.483 0.024 0.633 0.936 0.548 0.520

\ Voted Perceptron 0.522 0.034 0.573 0.931 0.546 0.509

\ KNN 0.525 0.039 0.539 0.926 0.532 0.492

\ Random Forest 0.461 0.041 0.492 0.919 0.476 0.432

\ JRip 0.501 0.056 0.438 0.909 0.467 0.419

\ PART 0.394 0.031 0.524 0.923 0.450 0.414

\ C4.5 (Only Bayes Net) 0.538 0.178 0.208 0.800 0.300 0.241

Table 9: Results of backward ablation analysis.
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on meta-learning, which exploits the synergy among various 
prediction tools, demonstrated prediction performance superior 
to that of single epitope predictors. Nevertheless, the current 
meta-learning approach to epitope prediction depends heavily 
upon the predictive strength of other pretrained conformational 
and linear epitope predictors that users cannot retrain directly. 
This limits the applicability and flexibility of meta-classifiers. 
Here, we proposed a cost-sensitive bagging MDT approach, 
which combines two ensemble learning techniques with a cost-
sensitive method. This method does not employ the predictions 
of any pretrained single epitope predictor, making it independent 
of multiple epitope prediction tools and capable of learning a 
meta-classification architecture from different given data, rather 
than restricting it through a prespecified and fixed hierarchy. This 
method applies the bagging mechanism to reduce the variance 
in the results of MDTs and considers the misclassification cost 
to adjust the final prediction and address the imbalanced class 
distribution in B-cell epitopes. 

The structural characteristics of epitopes are different between 
bound and unbound states. Unlike previous studies of epitope 
prediction that conducted experiments mainly on bound-
state structures [6, 7, 16, 34], we evaluated the performance of 
MDT for bound and unbound epitope prediction, respectively. 
While most of the epitope predictors have been trained from 
and tested on different bound-state antigens, to draw a fair 
comparison between MDT and other predictors for bound-state 
antigen prediction, instead of performing k-fold CV, we ran an 
independent test and also made individual comparisons. The 
results of the independent test and individual comparisons both 
demonstrated that our proposed meta-learning MDT approach 
outperformed the single base tools and other recently developed 
meta-learning epitope predictors for bound-state epitope 
prediction. By contrast, we conducted antigen-based 10-fold 
CV for unbound epitope prediction evaluation between MDT 
and other epitope predictors. The 10-fold CV was conducted 
on a recently constructed unbound structure data set [39]. It 
had not been used yet to pretrain any of the epitope predictors 
in comparison, and consequently, it was adopted to compare 
the performance for unbound epitope prediction. The results 

demonstrated the superior performance of MDT in comparison 
with three commonly used structure-based epitope predictors, 
and showed a marginally but noticeably higher performance 
than that of an unbound-state epitope predictor. 
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