
en42 Original Article

Comparison of Intelligent Computing Techniques for

Classification of Clinical EEG Signals

D. Najumnissa1, T.R.Rangaswamy1

1 Department of Electronics and Instrumentation Engineering B.S.Abdur Rahman University, India

Abstract

Objective: The objective of this work is to develop ef-
ficient classification systems using intelligent computing
techniques for classification of normal and abnormal EEG
signals.
Methods: In this work, EEG recordings were carried out
on volunteers (N=170). The features for classification of
clinical EEG signals were extracted using wavelet transform
and the feature selection was carried out using Principal
Component Analysis. Intelligent techniques like Back Pro-
pagation Network (BPN), Adaptive Neuro-Fuzzy Inference
System (ANFIS), Particle Swarm Optimization Neural net-
work (PSONN) and Radial Basis function Neural network
(RBFNN) were trained for diagnosing seizures. Further,
the performance of the developed classifiers was compared.

Results: Results demonstrate that RBFNN classifies nor-
mal and abnormal EEG signals better than the other me-
thods. It appears that the RBFNN is able to detect Genera-
lized Tonic-Clonic Seizure (GTCS) more efficiently than the
Complex Partial Seizures (CPS). Positive predictive value
was better in PSONN and ANFIS than BPN method.
Conclusions: It appears that the combination of Wavelet
transform method and PCA derived features along with
RBFNN classifier is efficient for automated EEG signal clas-
sification.
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1 Introduction

Infections are important cause of epilepsy in develop-
ing countries, the frequency of which may differ widely
in different locations. Viral, bacterial, fungal and para-
sitic infections can result in epilepsy [1, 2]. For example,
the cytomegalovirus produces typical encephalitis with
fever, headache and seizures. Cytomegalovirus can cause
seizures in 4% to 11% of HIV patients. Herpes simplex
virus is a DNA virus that causes the most common form
of sporadic fatal encephalitis in children older than six
months and adults worldwide [1]. A seizure complication
of infection can consist of a single seizure or can go on to
become chronic epilepsy. Epilepsy is a neurological disor-
der characterised by recurring seizures. Like many other
neurological disorders epilepsy can be assessed by electro
encephalograms (EEG) [3]. EEG signals are difficult to
characterise since they are non-stationary and highly non-
linear. Since seizures occur irregularly and unpredictably,
automatic seizure detection in EEG recordings is highly
required [4].

Significant diagnostic information can be obtained
from the frequency distribution of epileptic EEG. A

method such as the wavelet transforms (WT) is power-
ful for extraction of diagnostic information from clinical
EEG signals [5]. WT is also appropriate for analysis of
non-stationary signals, and hence it is suitable for locat-
ing transient events. The features extracted using WT
can be used to analyze various transient events in biolog-
ical signals. Recently, work on time-frequency analysis of
EEG signals for detecting seizures using WT has been re-
ported [5, 6, 7, 8, 9]. Principal component analysis, or
PCA, is a technique that is widely used for applications
such as dimensionality reduction, lossy data compression,
feature extraction, and data visualization. PCA is a sta-
tistical method used to transform the input space into a
new lower dimensional space. PCA technique has been
investigated before by researchers for signal and image
processing [10].

Neural networks are routinely employed in signal clas-
sification systems [11, 12, 13]. Fuzzy sets have attracted
the growing attention and interest in modern information
technology, production technique, decision making, pat-
tern recognition, diagnostics, data analysis, etc. [14, 15].
In recent years, the integration of neural networks and
fuzzy logic has given birth to new research into Neuro-
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fuzzy systems. As a result, those systems can utilize lin-
guistic information from the human expert as well as mea-
sured data during modeling. Such applications have been
developed for signal processing, automatic control, infor-
mation retrieval, database management and data classifi-
cation [16, 17, 18, 19, 20, 21]. Successful implementations
of ANFIS in biomedical engineering have been reported,
for classification [10, 16, 18], for modeling and controlling
real systems [21] and data analysis [22]. Particle swarm
optimization (PSO) is an evolutionary optimization tech-
nique motivated by the simulation of social behavior [23].

Radial basis function (RBF) neural networks are good
at modeling nonlinear data and can be trained in one stage
rather than using an iterative process as in multilayer per-
ceptron and also learn the given application quickly. En-
rico [24] surveyed the different interpretations of radial ba-
sis function neural networks in order to emphasize their
relevant properties and concluded that medical applica-
tions usually used radial basis function neural networks.
Recently, there is a growing interest in the use of RBFNN
for its short training time and being guaranteed to reach
the global minimum of error surface during training [25].
There are several reports regarding the use of RBFNN for
solving classification problems [26, 27, 28, 29]. Addition-
ally, this network is inherently well suited for classifica-
tion, because it naturally uses unsupervised learning to
cluster the input data [30, 31].

This paper aims to extract features from EEG signals
using WT and feature selection is performed using PCA.
Further, classification systems for diagnosis of normal and
abnormal EEG signals have been developed using ANFIS,
PSONN and RBFNN techniques.

2 Methodology

This paper will focus on an automatic diagnosis sys-
tem to classify the normal and epileptic seizure EEG sig-
nals. This system consists of two stages. The first stage
is the feature extraction from EEG signals and the se-
cond stage is the classification of EEG signals based on
the computed features. Figure 1 shows the block diagram
of the proposed methodology.

In this work, EEG recordings are carried out on vo-
lunteers (N=170). This dataset includes 60 subjects diag-
nosed as normal, 60 subjects diagnosed with generalized
tonic clonic seizures and 50 subjects diagnosed with com-

plex partial seizures. The typical normal and abnormal
EEG signals are shown in Figures 2, 3 and 4.

2.1 Subjects and Data Recording

Subjects within the age group of 21 to 40 were selected
for this study. The EEG was collected using Nihon Ko-
hden digital EEG system comprising of a data acquisition
system, signal processor and a personal computer from Sri
Ramachandra Medical University and Research Institute,
Chennai. The 10 second scalp EEG data used in this study
was sampled at a rate of 500 Hz after filtering between 1
and 70 Hz. A bipolar electrode montage of 16 channels
was used in the analysis. The EEGs were recorded with
Ag/AgCl electrodes placed at the F4, C4, P4, O2, F3, C3,
P3, O1, Fp2, F8, T4, T6, Fp1, F7, T3, and T5, loci of the
10–20 International System. Impedance was kept below
5 kΩ to avoid polarization effects. All data were stored
for off-line processing. All EEGs with artifact, electrode
movement and bursts of alpha waves were discarded.

2.2 Visual Inspection and Validation

Two EEG technologists with experience in the clinical
seizure EEG signals separately inspected every recording
included in this study to score clinical seizure and normal
signals. The two experts revised the signals together to
solve disagreements and set up the training set for the
development of the classification systems. They also ex-
amined each recording completely for epileptic seizures.
This validated set provided the reference evaluation to es-
timate the performance of the classifiers.

2.3 Wavelet Analysis and Feature
Extraction

2.3.1 Artifact Removal from EEG Signals

The presence of artifacts in the signals is one of the ma-
jor difficulties in analysis of EEG signals. This nature of
disturbance is a serious obstructing factor that prohibits
further processing to identify useful diagnostic features.
Artifacts in EEG are commonly handled by discarding
the affected segments of EEG. The simplest approach is to
discard a fixed length segment, perhaps one second, from

Figure 1: Schematic of the EEG signal classification system.
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Figure 2: Normal EEG signal.

Figure 3: Generalised tonic-clonic seizure EEG signal.

the time an artifact is detected. Discarding segments of
EEG data with artifacts can greatly decrease the amount
of data available for analysis. Since the frequency bands of
these noises may overlap with the seizure signal, conven-
tional method of using filters was not suitable for removal
of noise. In this work, DWT based denoising technique,
namely wavelet shrinkage denoising was used [31].

2.3.2 Multiresolution Decomposition of EEG Signals

The Discrete Wavelet Transform (DWT) is a versatile
signal processing tool that analyzes the signal at differ-
ent frequency bands, with different resolutions by decom-
posing the signal into a coarse approximation and detail
information [32]. We visually inspect the data first, and
if the data is discontinuous, Haar or other sharp wavelet
functions are applied [33] or else a smoother wavelet can

be employed. Usually, tests are performed with different
types of wavelets and the one which gives maximum effi-
ciency is selected for the particular application.

Table 1: Frequencies corresponding to different levels of de-
composition.

Decomposed signal Frequency range (Hz)
D1 125 – 250
D2 62.5 – 125
D3 31.25 – 62.5
D4 15.625 – 31.25
D5 7.8125 – 15.625
D6 3.9063 – 7.8125
D7 1.9531 – 3.9063
D8 0.9766 – 1.9531
A8 0 – 0.9766
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Figure 4: Complex partial seizure EEG signal.

In this study Quadratic spline wavelet is chosen. The
levels are chosen such that those parts of the signal that
correlate well with the frequencies required for classifica-
tion of the signal are retained in the wavelet coefficients.
Since the EEG signals do not have any useful frequency
components above 30 Hz, the number of levels was chosen
to be 8. Thus the signal is decomposed into the details
D1–D8 and one final approximation, A8 [27]. The ranges
of various frequency bands are shown in Table 1.

2.3.3 Feature Extraction

The extracted wavelet coefficients provide a compact
representation that shows the energy distribution of the
signal in time and frequency. It is anticipated that the
coefficients of the seizure frequency spectrum ranges from
0.5 to 30 Hz. So the coefficients corresponding to the fre-
quency bands, D1- D3 were discarded, thus reducing the
number of feature vectors representing the signal. In or-
der to further reduce the dimensionality of the extracted
feature vectors, Gotman [34] features and some statisti-
cal features are used from the wavelet coefficients. These
feature vectors, calculated for the frequency bands D4–D8
and A8, is used for classification of the EEG signals.

2.4 Intelligent Computing Techniques

2.4.1 Adaptive Neuro-Fuzzy Inference system
(ANFIS)

ANFIS was first introduced by Jang in 1993 [20].
It is a model that maps inputs through input member-
ship functions (MFs) and associated parameters, and then
through output MFs to outputs. We consider one degree
of Sugeno’s function [18] that is adopted to depict the
fuzzy rule. Hence, the rule base will contain two fuzzy
if–then rules as shown in equations (1) and (2):

Rule 1 : if x is A1 and y is B1 then f = p1x + q1y + r1. (1)
Rule 2 : if x is A2 and y is B2 then f = p2x + q2y + r2. (2)

where x and y are the inputs, Ai and Bi are the fuzzy
sets, fi are the outputs within the fuzzy region specified
by the fuzzy rule, pi, qi and ri are the design parameters
that are determined during the training process.

2.4.2 Particle Swarm Optimization Neural Network
(PSONN)

The PSO algorithm is a population based search algo-
rithm based on social behavior of birds within a flock. A
swarm consists of a set of ‘N’ particles where each particle
represents a potential solution. Particles are then flown
through the hyperspace, where the position of each par-
ticle is changed according to its own experience and that
of its neighbors.

In the original formulation of PSO [23], each particle
is defined as a potential solution to the problem in a D-
dimensional space and each particle maintains a memory
of its previous best position. The particle position with
the highest fitness value for the entire run is called the
global best.

At each of the iteration the velocity vector (Vi) of par-
ticle is adjusted based on its best solution and the best
solution of its neighbors. The position (xi)of the velocity
adjustment made by the particle’s previous best position
is called the cognition component and the position of the
velocity adjustments using the global best is called the
social component. The PSO equations described in [21]
are

Vi(t + 1) = wVid(t) + c1r1(. . .) ∗ (pid(t) − xid(t)) +

+ c2r2(. . .) ∗ (pgd(t) − xid(t)) (3)
xid(t + 1) = xid(t) + Vid(t) (4)
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where w is the inertia weight, c1 and c2 are positive accel-
eration constants. The velocity vector drives the optimiza-
tion process and reflects socially exchanged information.

2.4.3 Radial Basis Function Neural Network
(RBFNN)

The radial basis function network (RBFN) is a mul-
tilayer feed forward neural network, which consists of an
input layer of source nodes, a layer of non linear hidden
units that operate as kernel nodes and an output layer of
linear weights. In response to an input vector, the outputs
of the hidden layer are linearly combined to form the net-
work response that is processed with a desired response to
the output layer. The weights are trained in a supervised
fashion using an appropriate linear method [35]. An acti-
vation function for a hidden layer node is a locally radial
symmetric function.

2.5 Performance Analysis

The performance of the developed classifiers was es-
timated using False Positive (FP), False Negative (FN),
True Positive (TP) and True Negative (TN) values [10].
Classification of a normal data as abnormal is considered

as FP and classification of abnormal data as normal is con-
sidered FN. TP and TN are the cases where the abnormal
is classified as abnormal and normal is classified as normal
respectively. The accuracy, sensitivity, specificity, positive
predictive value and negative predictive value were esti-
mated using the following relations as shown in equations:

Accuracy = (TP + TN) / (TP + FP + TN + FN) (5)
Sensitivity = TP / (TP + FN) (6)
Specificity = TN / (TN + FP) (7)

False Positive Rate = FP / (TN + FP) (8)
Positive Predictive Value = TP / (TP + FP) (9)

Negative Predictive Value = TN / (TN + FN) (10)

Accuracy is the representation of classifier perfor-
mance in global sense. Sensitivity and specificity are the
proportions of abnormal data classified as abnormal, nor-
mal data classified as normal respectively.

3 Results and Discussion

The EEG signals were decomposed into details D1–D8
and one final approximation A8 using wavelet transforms.
The features like energy, entropy, Hurst exponent, Largest

Table 2: Descriptive statistics of the decomposition level 6.

Sl. No D6 Feature
Normal (60) GTC (60) CPS (50)

p-value
Mean ± SD Mean ± SD Mean ± SD

1 Energy 0.13 ± 0.08 0.07 ± 0.001 0.06 ± 0.01 0.0006
2 Max 0.15 ± 0.06 0.17 ± 0.107 0.16 ± 0.14 0.0001
3 Min 0.50 ± 0.19 0.30 ± 0.209 0.17 ± 0.16 0.0195
4 Mean -0.15 ± 0.001 0.03 ± 0.03 0.02 ± 0.001 0.0032
5 Standard deviation 0.35 ± 0.12 0.19 ± 0.11 0.17 ± 0.13 0.0055
6 Variance 0.14 ± 0.09 0.07 ± 0.009 0.06 ± 0.009 0.0008
7 Hurst 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.03 0.0198
8 Entropy 0.13 ± 0.02 0.08 ± 0.012 0.095 ± 0.014 0.0003
9 Pyy 0.24 ± 0.21 0.05 ± 0.02 0.03 ± 0.004 0.0056
10 Freq At Pyy 0.71 ± 0.13 0.70 ± 0.11 0.70 ± 0.11 0.0011
11 LLE 0.93 ± 0.02 0.91 ± 0.03 0.90 ± 0.04 0.0102

Table 3: Descriptive statistics of the decomposition level 7.

Sl. No D7 Feature
Normal (60) GTC (60) CPS (50)

p-value
Mean ± SD Mean ± SD Mean ± SD

1 Energy 0.07 ± 0.06 0.05 ± 0.01 0.05 ± 0.002 0.0136
2 Max 0.14 ± 0.07 0.16 ± 0.12 0.10 ± 0.08 0.0171
3 Min 0.43 ± 0.22 0.31 ± 0.26 0.18 ± 0.17 0.0107
4 Mean -0.08 ± 0.03 0.01 ± 0.01 0.04 ± 0.02 0.0013
5 Standard deviation 0.23 ± 0.09 0.14 ± 0.09 0.14 ± 0.11 0.0013
6 Variance 0.07 ± 0.07 0.07 ± 0.01 0.05 ± 0.004 0.0001
7 Hurst 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.02 0.0059
8 Entropy -0.04 ± 0.02 0.05 ± 0.009 0.106 ± 0.015 0.0019
9 Pyy 0.10 ± 0.10 0.05 ± 0.03 0.03 ± 0.001 0.0005
10 Freq At Pyy 0.79 ± 0.15 0.80 ± 0.16 0.81 ± 0.16 0.0008
11 LLE 0.89 ± 0.03 0.88 ± 0.04 0.78 ± 0.04 0.0507
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Lyapunov exponent (LLE), maximum power of the spec-
trum, frequency at which maximum power exists and sta-
tistical features like mean, standard deviation, maximum
and minimum of the coefficients and variance were ex-
tracted. Totally 55 features were extracted for each sub-
ject. The statistical analysis on the extracted features
such as mean and standard deviation for level D6 and D7
is shown in Table 2 and Table 3.

Figure 5: Percentage variance for normal and abnormal sub-
jects for Quadratic Spline Wavelet.

Figure 6: Variation in Energy for both normal and abnormal
EEG at D6.

PCA based choice of wavelets and feature extrac-
tion: PCA was applied for selection of wavelet and fea-
ture reduction. The original feature space consists of 55
EEG features which included frequency domain features,
the statistical features and the nonlinear features obtained
from normal and clinical seizure subjects from the dif-
ferent types of wavelets like Haar, db2, db4, db5 and
quadratic spline. Some of the methods like Correlation-
based Feature Selection [36], Chi-square Feature Evalua-
tion [36] does not perform feature selection but only fea-
ture ranking, and they are usually combined with another

method when one needs to find out the appropriate num-
ber of attributes. PCA is used to make a classifier sys-
tem more effective, having less computational complexity,
and less time consumption. Hence the dataset obtained
from the EEG containing 55 parameters for five types of
wavelets were subjected to PCA. The Principal Compo-
nents obtained from PCA were analyzed for ranking the
most significant wavelet and features. When PCA was
applied, it was observed that the features derived out of
quadratic spline wavelet had the maximum variance than
the other wavelets used. The percentage variance of the
extracted features of normal and abnormal subjects for
the quadratic spline wavelet is plotted in Figure 5. Hence
quadratic spline wavelet features were considered for fur-
ther analysis.

Figure 7: Variation in Energy for both normal and abnormal
EEG at D7.

Figure 8: Variation in Minimum for both normal and abnormal
EEG at D6.

Qualitative assessment of features: One of the sim-
plest linear statistics that may be used for investigating
the dynamics underlying the clinical EEG is the variance
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of the signal calculated in consecutive non overlapping
windows. The various features obtained from the wavelet
decomposition were correlated with the variance of the
original signal. It was observed from Table 4 that at level
D4, D5 and at D8, there were poor correlation values for
normal and abnormal features. In level D6 and D7 the
correlation of certain features with variance was higher
than the other levels of decomposition. The Features like
energy, minimum, standard deviation and the entropy of
DWT coefficients have very high correlation with high sig-
nificance (p < 0.001).

Figure 9: Variation in Minimum for both normal and abnormal
EEG at D7.

Figure 10: Variation in standard deviation at D6.

Figures 6 and 7 shows the variation in energy with
the variance of the original signal for normal and abnor-
mal subjects in levels D6 and D7 respectively. It was
observed that the energy correlates well with the variance
in level D6 and D7. A high degree of correlation (R=0.95)

is found for abnormal subjects in level D6. Figure 8 and
9 show the variation in minimum value with the variance
of the original signal for normal and abnormal subjects
respectively. A high degree of correlation (R=0.95) was
found for abnormal subjects in level D6. It was found that
correlation of minimum value with variance was more in
abnormal than normals. The variation in measured Stan-
dard deviation values of decomposed wavelet coefficient
with values of variance for normal and abnormal subjects
is shown in Figures 10 and 11 respectively. A high degree
of correlation (R=0.97) was found for abnormal subjects
in level D7. It was found that correlation of standard de-
viation value with variance is more in abnormal subjects
than normal subjects.

Figure 11: Variation in standard deviation at D7.

Figure 12: Variation in Entropy for both normal and abnormal
EEG at D6.

The variation in Entropy values of wavelet coefficient
with values of variance for normal and abnormal subjects
is shown in Figures 12 and 13 respectively. Entropy is
a measure of the disorder present in a system. The ne-
gative value of the entropy of the Abnormal EEG shows
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that there is a move towards ordered state. From Figures
12 and 13, it is seen that the correlation between entropy
and variance for normal subjects is lower (R=0.88, 0.91)
stating that the signals are deterministic and for abnormal
subjects the correlation values were found to be (R=0.98,
0.96) higher. Among the entire parameters mean, Hurst
exponent, frequency at maximum power of the spectrum
and largest Lyapunov exponent show poor degrees of cor-
relation. Thus the parameters Energy, minimum, stan-
dard deviation and entropy derived from approximated
coefficients seems to be useful parameters to differentiate
normal and abnormal.

Figure 13: Variation in Entropy for both normal and abnormal
EEG at D7.

The percentage variances between the various
quadratic spline wavelet features were estimated for the
normal and abnormal subjects. The Principal Com-
ponents that explain the maximum percentage variance
were chosen and the corresponding component magni-
tudes were analyzed. The parameters with highest mag-
nitudes in the loadings of the Principal Components were
chosen for further classification and are shown in Table 5.

Performance of the intelligent computing tech-
niques Tables 6 and 7 show the performance compari-
son of all the methods without PCA and with PCA based
features. It was found that RBFNN classifies EEG sig-
nals better than the other methods for all features and
PCA based features. Positive predictive value was better
in PSONN and ANFIS than BPN method. It is clearly
seen that RBFNN has better accuracy when compared
with the other classifiers. These results indicate that the
proposed RBFNN model has a potential in clinical seizure
detection. Table 8 shows the comparison of classification
accuracy with PCA based features for normal EEG and
different types of seizure EEG signals.

4 Conclusions

In this study, normal and seizure EEG features were
extracted using quadratic spline wavelet. The appropriate
feature components were delineated and the correspond-
ing statistical parameters were computed. In this work,
clinical EEG signals were classified into normal and abnor-
mal, using intelligent computing techniques. The perfor-
mance of the developed classifiers was assessed and com-
pared using sensitivity, specificity, positive predictive and
negative predictive values. The conclusions were drawn af-
ter meticulous experimentation on best architecture, num-
ber of hidden neurons required and performance goal. It
was observed that the RBFNN has better classification ac-
curacy when compared to BPN, ANFIS and PSONN. The
value of specificity shows that RBFNN classifies abnormal
data more accurately than ANFIS and back propagation
network. The positive predictive value suggests that the
classification of EEG signals into normal is higher in the
RBFNN than that of the other classifiers used in this
study. The negative predictive value indicates that the
back propagation network diagnoses the abnormal data
more correctly than the normal data. It was found that
the RBFNN classifies Generalized Tonic Clonic seizure
better than the complex partial seizure and normal EEG

Table 4: The correlation coefficient of variance and wavelet derived features for level D4 – D8.

Features
D4 D5 D6 D7 D8

N A p N A p N A p N A p N A p
Energy 0.84 0.85 0.0096 0.87 0.84 0.0101 0.89 0.95 0.0039 0.85 0.89 0.0027 0.75 0.88 0.2788
Maximum 0.89 0.84 0.0206 0.93 0.57 0.1777 0.83 0.93 0.6657 0.93 0.94 0.5877 0.83 0.92 0.8744
Minimum 0.96 0.84 0.0025 0.97 0.76 0.3654 0.84 0.95 0.0011 0.88 0.93 0.0001 0.39 0.76 0.0004
Mean 0.38 0.16 0.0091 0.21 0.38 0.4621 0.43 0.57 0.9849 0.93 0.93 0.7396 0.92 0.65 0.2231
Std 0.83 0.96 0.0002 0.87 0.86 0.0001 0.88 0.96 0.0021 0.93 0.97 0.0001 0.48 0.95 0.2992
Variance 0.93 0.97 0.0046 0.90 0.85 0.0001 0.81 0.93 0.0031 0.66 0.73 0.0008 0.61 0.65 0.0001
Hurst 0.39 0.19 0.5256 0.85 0.43 0.5646 0.46 0.74 0.0030 0.39 0.67 0.0001 0.93 0.86 0.3333
Entropy 0.85 0.96 0.6977 0.82 0.87 0.0001 0.88 0.98 0.0086 0.91 0.96 0.0167 0.87 0.73 0.0179
Pyy 0.64 0.42 0.5088 0.89 0.69 0.1416 0.89 0.99 0.1388 0.97 0.41 0.0046 0.91 0.28 0.0048
Freq at Pyy 0.30 0.04 0.0001 0.79 0.18 0.3092 0.88 0.77 0.0249 0.28 0.42 0.7906 0.99 0.11 0.3215
LLE 0.30 0.06 0.0239 0.64 0.19 0.9153 0.91 0.72 0.0870 0.76 0.85 0.0081 0.76 0.33 0.0897
N=Normal, A=Abnormal, p=pvalue D4 – D8 decomposed levels of wavelet transform

c©2013 EuroMISE s.r.o. EJBI – Volume 9 (2013), Issue 2



en50 Najumnissa, Rangaswamy - Comparison of Intelligent Computing Techniques for Classification of EEG Signals

Table 5: Component Magnitudes in PC1 and the corresponding features for Normal and seizure EEG.

Component Magnitude Sub-band Corresponding features in the dataset
PC(13) 0.199 D6,D7 Minimum of absolute value
PC(32) 0.196 D6,D7 Energy
PC(18) 0.195 D6,D7 Entropy
PC(35) 0.193 D6,D7 Standard deviation

Table 6: Comparison of Performance of the methods with all features.

Indices BPN (%) ANFIS (%) PSONN (%) RBFNN (%)
Accuracy 73 79 81 85
Sensitivity (True positive rate) 66 74 80 76
Specificity 83 87 83 100
False positive rate ( 1-specificity) 17 13 17 0
Positive Predictive Value 90 90 89 100
Negative Predictive Value 60 67 71 71

Table 7: Comparison of classification performance with PCA based features.

Indices BPN (%) ANFIS (%) PSONN (%) RBFNN (%)
Accuracy 89 93 94 99
Sensitivity (True positive rate) 96 90 92 98
Specificity 80 97 97 100
False positive rate ( 1-specificity) 20 3 3 0
Positive Predictive Value 86 98 98 100
Negative Predictive Value 93 85 88 97

signals. The proposed methodology makes it possible as a
real-time detector, which will improve the clinical service
of Electroencephalographic recording. Hence the combi-
nation of Wavelet transform method and PCA derived
features pertaining to normal and seizure EEG along with
RBFNN based classification appears to be efficient for au-
tomated EEG signal classification.

Table 8: Comparison of classification accuracy with PCA
based features for normal EEG and different types of seizure
EEG signals.

Algorithm NORMAL GTCS CPS
BPN 93.3 86.7 85
RBFNN 100 96.7 100
ANFIS 96.7 90 90
PSONN 96.7 93.3 90
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