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Summary: The electrocardiogram (ECG)
is one of the most common ways to record,
in an non-invasive manner, a patient’s
cardiac activity. Once recorded the
information can be pre-processed and
subsequently analyzed to assess if the
patient is suffering from any forms of
cardiac abnormality which may require
clinical intervention. In the current study we
investigate ways in which more can be
obtained from the ECG through analysis of
the diagnostic properties of body surface
potential maps (BSPM). A set of 192 lead
BSPMs recorded from a mixture of 116
normal and abnormal subjects (59 normal
vs 57 old myocardial infarction) were
analyzed. For each patient, diagnostic
features were obtained by calculating
isointegral measurements from the QRS,
STT, and entire QRST segments. These
isointegrals provide a measure of the
mean distribution of potential during
ventricular depolarization, repolarisation,
and a combination of both, respectively.
For each isointegral type, 192 discrete
measurements, and hence 192 features,
were obtained; these correspond with the
192 leads recorded. Subsequent to this
a signal-to-noise ratio-based feature
ranking methodology was applied to select
subsets of the best three, six and ten
measurements (features) from the 192
available for each isointegral. These
subsets of features were then applied to
four different classifiers Naive Bayes (NB),
support vector machine (SVM), multi-layer
perceptron (MLP) and random forest (RF)
and in each application ten-fold cross
validation was employed. It was found that
when using the subsets of features
obtained from the STT or QRST
isointegrals, classification results in
excess of 80% were attainable. Thiswas in
contrast to the results obtained using the
QRS isointegral features where poorer
performance (between 62.9% and 74.1%)
was observed. The results from this study
have illustrated that, for the studied
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dataset, the mean distribution of potentials
during ventricular depolarization, and
during ventricular repolarization and
depolarization combined possessed
greater diagnostic information. Overall it
was concluded that this approach to BSPM
analysis does provide a useful means for
illustrating the usefulness of various
featuresin diagnostic classification.

Keywords: electrocardiogram, body
surface potential map, myocardial
infarction, feature selection

1.Introduction

The 12-lead ECG is used to detect many
cardiac abnormalities which include
electrical conduction defects and
myocardial infarction (MI) [1]. The
accuracy of the 12 lead ECG has, however,
been called into question [2], and this is
based largely on the appreciation that the
necessary diagnostic information may not
be captured by the recording sites that
make up this format. To counter this,
investigators have looked to alternative
recording techniques to capture more
useful information. The most extreme
example of this is the BSPM. In this
approach ECG information is recorded
from as many as 200 sites on the torso [3],
[4]. This level of spatial sampling provides
a much more comprehensive picture of
cardiac activity as effectively all ECG
information, as projected onto the body's
surface, is captured. Although superior in
terms of their diagnostic yield [5], BSPMs
are not widely used in clinical practice. This
is because the large number of recording
channels makes the acquisition process
more cumbersome and BSPMs have not
experienced widespread utility outside of
the research laboratory. Despite this there
is much to be gained from the study of
BSPM data, as in effect a more
comprehensive picture of cardiac activity is
being studied. In this paper we detail the

investigation of the use of BSPM data in
the classification of old MI. In particular we
focus on locating the most useful
diagnostic information in BSPMs and we
use this to address the classification
problem.

2. Methods

In this study we analyze a set of 192 lead
BSPMs that were recorded from a mixture
of patients that were previously diagnosed
as being normal or having old MI. The
clinical data and experimental procedures
are described as follows.

Clinical Data

The 192 lead BSPMs were recorded from
a group of 116 subjects. This was made up
of 57 subjects with Ml at various locations
and 59 normal subjects. The breakdown of
this dataset is listed in Table 1. The
recording procedure has previously been
described in [6], [7], [8] and is summarized
as follows. On each subject the electrodes
were positioned by placing 16 columns of
12 electrodes on the torso. These columns
were equi-spaced around the thoracic
circumference and a schematic of this
electrode array is illustrated in Figure 1.
For each subject the 192 channels of
information were sampled simultaneously
for a number of seconds. Subsequent to
recording the data were averaged to
represent one cardiac cycle. Beat markers
were then inserted on this averaged beat
by a human expert.

Isointegral Measurements

Due to the abundance of data that is
recorded using BSPMs, techniques have
been developed that allow the effective
reduction of this data prior to interpretation.
A technique that has been widely adopted
in BSPM representation is the use of
‘isointegral' or ‘isoarea’ maps.
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Figure 1. Schematic of electrode array employed to record BSPM data. This
illustration depicts the array as an unrolled cylindrical matrix of
16 x 12 = 192 recording sites. The top row corresponds with a horizontal line
running around the circumference at the level of the suprasternal notch. The
bottom row corresponds to a horizontal line at the level of the umbilicus.

iy

In this approach the area under a specific
portion of the ECG wave is calculated for
each recorded lead; the resulting value for
each individual lead is then used to
generate a contour map. This technique
summarizes the information contained in
dozens of instantaneous maps into one
picture [9], [10].

Although some information is lost,
isointegral maps are useful as they provide
an indication of the mean distribution of
potentials over the selected interval. Two
such maps that are commonly studied are
the QRS isointegral and the STT
isointegral [9]. These maps provide an
indication of the mean distributions during
ventricular activation (depolarization) and
recovery (repolarization) respectively.
QRST isointegral maps have also been
studied as they provide an indication of the
‘ventricular gradient, a measure of how
much the processes of depolarization and

EJBI - Volume 3 (2007), Issue 1

repolarisation do not cancel one and other
out in any particular lead [10]. Figure 2
illustrates the regions of a representative
cardiac cycle incorporated in each
isointegral.

In the current study QRS, STT and QRST
isointegrals were calculated. Each of these
isointegrals consisted of 192 values which
are used to generate a contour map. As
the patterns of extrema, maxima and
minima of such a map are studied by the
clinician in order to provide diagnosis and
because these patterns are characterized
by the 192 calculated values, these values
can be considered as features in the
context of computerized classification. For
the studies presented in this paper, three
such maps were calculated; this effectively
resulted in 576 features for each subject
(3 x 192). This also translates to having
three features per recording site per
patient, e.g. for each recording site we
have one QRS, one STT, and one QRST
value.

Figure 2. lllustration of area
incorporated by (a) QRS, (b) STT
and (c) QRST isointegrals.

Feature selection

After calculation of the isointegral values
further reduction in dimensionality was
achieved by employing a signal-to-noise
ratio-based feature ranking procedure.
This approach is similar to the filter'
method proposed in [11] where each
individual isointegral feature was ranked
based on its utility when considered as an
input to a single variable classifier (SVC).
In the current study each variable is ranked
using a signal-to-noise ratio-based feature
ranking criterion [12], [13], [14].
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Let u,(f) and w,(f) be the mean values of
feature f for the classes 1 and 2; ¢,(f) and
0,(f) be the respective standard deviation
values of /" feature f for the same classes,
hence S, is determined as:

oo ﬂl(uﬁ')_ﬂQ(.ﬂ') (1)
a (f)+ ()

A higher value of |S] indicates a stronger
correlation between the feature value and
the class distinction and hence infers that
such a feature is useful in discriminating
between classes.

Classification

Following the signal-to-noise ratio-based
feature ranking the best subsets of three,
six and ten measurements (features) from
the 192 available for each isointegral were
used as inputs to four classification models
(NB, SVM, MLP and RF). A brief
description of these common classifiers is
given as follows:

NB is a simple probabilistic classifier. It is
based on the Bayes rule of conditional
probability and it naively assumes
independence between features. It uses
the normal distribution to model numeric
attributes by calculating the mean
standard deviation for each class [15].

SVMiis a kernel based classifier. The basic
training for SVMs involves finding
a function which optimizes a bound on the
generalization capability, i.e., performance
on unseen data. By using the kernel trick
technique, SVM can apply linear
classification techniques to non-linear
classification problems [16].

A MLP is a non-linear classification
approach that may be trained using the
back propagation algorithm. A MLP
consists of multiple layers of computational
units (an input layer, one or more hidden
layer and one output layer) [17].

A RF classifier constructs a number of
decision trees. Each tree is grown from
a different set of training data which are
randomly selected with replacement. At
each decision node the RF determines the
best splitting feature from a randomly
selected subspace of features. The final
classification is based on the majority
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votes among instances decided by the
forestoftrees [18].

In the evaluation of each classifier we used
ten-fold cross validation. The quality of
each classifier was assessed by the extent
to which the correct class labels have been
assigned. In order to appreciate the
experimental outcomes it is important not
only to examine how many samples have
been correctly classified in relation to
a particular class, but also to indicate how
well a classifier can classify an unknown
sample as not belonging to a particular
class. Thus, this study evaluates classifiers
based on three statistical measures:
precision (Ppv) (equation 2), true positive
rate (also known as sensitivity, Se)
(equation 3) and true negative rate (also
known as specificity, Sp) (equation 4)
which can be calculated as follows:

TP _
Fpv(©o) = £100% (2)
TP+ FP
Se(%o) = 100% (3)
TP+ FN
Sp(%) = 1000 (4)
p(0) FP+TN .

Where TP is frue positive (samples
correctly classified to appropriate class),
FN is false negative (samples incorrectly
classified as not belonging to appropriate
class), FP is false positive (samples
incorrectly classified as appropriate class),
and TN is true negative (samples correctly
classified as not belonging to appropriate
class).

All four classification models were
implemented within the framework
provided by the Weka open-source
platform [19]. The configuration of the
various classification models is
summarized as follows:

The SVM results were obtained by using
a polynomial kernel. For the MLP model,
the results were obtained using a model
consisting of one hidden layer with six
nodes when evaluating the top ten
features, four nodes when evaluating the
top six features and two nodes when
considering the top three features (the
choice of feature subsets is discussed later
in the paper). Each MLP was trained for

500 epochs and the learning rate was set
to 0.3. For the RF algorithm, ten trees were
grown in each run and the minimum
number of instances per leaf was equal to
two. A more detailed description of the
selection of learning parameters for these
models can be foundin[19].

3.Results

Feature selection

The feature selection approach adopted
resulted in a set of scores for each of the
isointegral types studied. As there are 192
feature scores, we were able to plot these
as a 192 dimensional contour plot. These
plots are illustrated in Figure 3. In the past
this means of representation has been
referred to as a lead performance map
(LPM) [11], [20]. In Figure 3 we have
plotted one such map for each isointegral.
The LPMs effectively show the distribution
of the scores for each available feature
with the output as calculated using
equation 1. Based on these values the
features were ranked and the top three, six
and ten features were selected. The
locations of the recording sites from which
these features are measured are
illustrated in Figure 4.

Classification

The classification accuracy of the three
subsets of features for each isointegral are
listed in Table 2. These results illustrate the
performance of the four different classifiers
(NB, SVM, MLP and RF) on each feature
subset. Final accuracies are based on ten-
fold cross validation as previously
described.

4. Discussion

We have divided this section between the
discussions of the (a) selected features
and associated recording sites and (b) the
actual classification results.

Feature selection

Firstly, referring to the QRS isointegral
based LPM depicted in Figure 3a. It can be
seen that there are two areas where the
correlation is greatest.
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These are a region on the inferior anterior
beneath the area interrogated by the
standard precordial leads and a region on
the superior posterior almost between the
two shoulders. In the case of the STT
isointegrals (Figure 3b) it can be seen that
again there are two regions that correlate
highly with the output. Again these are
located on both the anterior and posterior
surfaces, however, this time the area of
high correlation on the anterior is located
more laterally (towards the subject's left).
The same also applies to the region on the
posterior where the high, this time, is closer
to the right shoulder as opposed to that in
the QRS map.

The characteristics of the QRST LPM lie
somewhere between that of the other two
maps. This is to be expected as the QRST
data is effectively a combination of that in
the QRS and STT portions. Overall, these
observations would indicate that, for this
population, there would be benefit in
locating recording sites outside the area
interrogated by the standard locations in
the 12 lead ECG. This consolidates the
findings of similar previous studies [6], [11],
[20],[21],122],[23].

Classification
On analysis of the classification results that
have been presented in Table 2, it can be

en10

seen that for each subset of features the
QRS based features exhibit the poorest
performance. This is observed from the
fact that, regardless of the classifier or the
size of the feature subset, the classification
accuracy attained does not exceed 75%. In
fact it is with this isointegral that lowest
accuracy of all is observed, this is 62.9%
using the RF classifier. The STT based
features generally exhibit superior
performance to the QRS based features as
in most cases a classification accuracy in
excess of 75% is observed. This is with the
exception of the subset of three STT
features in conjunction with the RF
classifier which exhibits an accuracy of just
under 70%.

01

Figure 3. Lead Performance Maps showing spatial distribution of
values as defined by Equation 1. Figures (a), (b) and (c) represent
QRS, STT and QRST isointegrals respectively.
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Figure 4. Positions of recording sites required to measure features
selected using ranking method. Figures (a), (b) and (c) represent
QRS, STT and QRST features respectively. In each case the top

three features are shown as stars, the next three as triangles and
the remaining four as squares.
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Table 2. Performance of feature subsets for all four classifiers.

By Clagsification e ouracy (%0)

HE SV MLE RF

Top 3 QRS features Tl.6 741 T8 638
Top 3 3TT features 03 E1.0 ia 5]
Top 3 QRST features 802 802 76 774
Top & QRS features 4.1 733 6.4 .4
Top 6 3TT features E1.0 3 784 202
Top & QRST features T84 802 T6.7 g1.0
Top 10 QRS features 733 733 64.7 G289
Top 10 3TT features 202 202 750 778
Top 10 QRST features 78 793 T84 B34

The QRST based features exhibit
performance that is comparable to that
obtained with the STT features. The QRST
features also exhibit the highest attained
accuracy which was 83.6%. This was
obtained when using the RF classifier
along with the subset of 10 features. The
fact that similar results can be attained
using the STT and QRST features may be
based on the fact that the QRST data
encompasses both the QRS and STT
distributions.

5.Conclusion

Based on the above experiments and
presented results we have illustrated how
diagnostic electrocardiographic informa-
tion is localized on the body surface. It can
also be seen that the localities of this
information may be outside the regions
currently interrogated using the standard
12 lead ECG. These results have validated
our initial hypothesis in that it is possible to
improve the automated diagnostic process
of cardiac assessment by trying to identify
alternative subsets of features from
BSPMs. Such findings offer the potential
for future recommendations in alternative
lead sets for cardiac assessment.

The current study has focused on the
investigation of a generic dataset which
represents both normal subjects and
subjects with infarctions at various
locations. In future studies we intend to
extend the work by considering subgroups
of patients. This includes the investigation
of patients with other disease types
(hypertrophy and conduction defects) and
investigation of sub groups of MI patients
based on infarct locations. A further issue
that needs to be addressed is the impact of
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sample size on the prediction results [24].
In this study, we only use the BSPM
recorded from 116 subjects. In order to
statistically justify the results, a larger
datasetis required.
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