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1 Introduction
Big Data in biomedicine represent an important and 

perspective but still not sufficiently utilized capital with a 
potential to improve the diagnosis, prognosis and therapy 
for individual patients. A proper biostatistical analysis of Big 
Data is one of key components (or even accelerators) of the 
development of reliable clinical decision support tools and 
has to face difficult challenges [1, 2].

Exploiting Big Data in biomedical research and practice 
also allows to contribute to improving the decision making 
process of clinical decision support, which requires to solve 
classification tasks. The aim is to learn a classification rule 
over a training dataset allowing to assign a new sample 
(individual) to one of the groups, e.g. according to the 
diagnosis and thus to decide for a particular diagnosis. It is 
however not so common that biomedical data have a  very 
larger number of observations n (i.e, the number of samples 
or patients). More commonly, Big Data in biomedicine have 
the form of high-dimensional data with a small or moderate 
n, but a large number of variables p (symptoms and signs, 
results of biochemical or laboratory measurements etc.).

If Big Data are also contaminated by noise, which is a 
typical situation, then a pre-processing and cleaning the data 
together with a consequent complexity reduction represent 
crucial preliminary steps of each analysis [3, 4]. Typical 
examples of such applications, which cannot be appropriately 
analyzed by standard methods, include molecular genetic 

studie, functional magnetic resonance imaging (fMRI) of 
brains [5], or longitudinal data.

This paper can be understood as an attempt to formulate 
our experience with analyzing biomedical Big Data, especially 
from the point of view of reducing their complexity, which 
makes the process of data analysis more accessible by means 
of multivariate statistical tools. We recall basic challenges 
of Big Data analysis, overview major approaches to their 
complexity reduction and illustrate their principles on 
some recent biomedical research tasks. Section 2 introduces 
the problem of Big Data and its analysis in biomedicine. 
Section 3 presents basic principles of complexity reduction. 
Particular methods are described in the consequent sections 
accompanied by examples, namely the principal component 
analysis in Section 4 for variable selection by maximal 
conditional entropy in Section 5. Finally, partial least squares 
for regression are described in Section  6, which are often 
transferred also to classification problems. Hypothesis tests 
are discussed in Section 7.

2 Big Data in Biomedicine 
Origins of multivariate statistics trace back to Karl Pearson 

(1857-1936), who developed the first multivariate statistical 
methods for the needs of anthropology and forensic science. 
The first applied statisticians of the beginning of the 20th 
century are at the same time well known by biologists. In 1911, 
Pearson founded the first statistical department at the world 
in London called Department of Applied Statistics, where 
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he was appointed as professor. The interdisciplinary department 
included also biometric and eugenic laboratories and the 
boundary between statistics and biological sciences was not clear 
at that time. Pearson introduced also the concept of contingency 
tables, which is until now a general statistical concept for tables 
of counts (i.e, of a discrete variable). Pearson analyzed them 
when trying to prove the evolution theory by means of statistical 
methods. Pearson defined contingency as a  broadly discussed 
phenomenon describing randomness or unpredictability within 
evolution with influence on the whole species of organisms. 
The concept of contingency tables remains in statistics as one 
statistical concepts with a biologically motivated name. 

The amount of data with a potential to improve healthcare for 
an individual patient rises enormously. Such big data represent 
a valuable capital with an opportunity for a dramatic change of 
current practices of health care, accelerating the development 
of information-based medicine [3, 4]. So far, big data in the 
psychiatric context are measured primarily for the research 
purposes, while they have the potential to contribute to improving 
the efficiency of clinical decision making and patient safety. 

Low-level computer tasks applied on the new types of data 
(including Big Data) have been described in recent monographs 
on health informatics [6]. So far, intensive attention has paid to 
technological aspects concerning the storage of big medical data 
in large databases and their transfer, protection (data security 
issues), sharing, lossless compression, information retrieval, and 
appropriate visualization. An important issue is also integration 
of various e-health systems allowing integrating individual data 
with data about the current care, brain imaging results, presence 
of risk gene variants etc.

The analysis of the clinical data by means of methods of 
multivariate statistics and data mining becomes a necessity as the 
volume of data namely grows not only rapidly but also much faster 
than the ability to analyze and interpret them. Unfortunately, 
the crucial important question how to acquire new medical 
knowledge by a proper analysis of big medical data reliably has 
obtained less attention. An example of an improper interpretation 
of statistical result is the paper by Nordahl H et al. [7], where low 
education is denoted as a risk factor of cerebrovascular stroke, 
while it is only an instrument associated with true risk factors 
(e.g. lifestyle or stress).

Traditional statistical methods are unsuitable for any form 
of Big Data. Therefore, dimensionality reduction (complexity 
reduction, variable selection) is generally recommended as the 
initial step of the analysis of data with a large number p of variables 
observed over n samples. It can actually improve the result of a 
subsequent analysis in spite of losing some relevant information. 

On the other hand, the idea of parsimony (i.e, reducing the 
set of variables to a too small number of relevant ones) has been 
also criticized [8] and variable selection may be optimized for 
a classification or clustering context [9]. Experience of applied 
researchers is critical for not being as good as presented in 

theoretical papers on simulated data [10]. We also should not 
leave out that in some clinical fields, data analysis has to face 
their own challenges and fulfill field-specific requirements.

3 Overview of Complexity Reduction 
Complexity reduction is a general concept including any 

approach to simplifying the analysis of data of various forms, 
e.g. finding suitable relevant features from medical images of 
the brain, voice records, narrative text of health reports etc. 
Various types and formats of biomedical data require a broad 
spectrum of sophisticated methods for their analysis.

In recent years, new specific complexity reduction 
approaches have proposed within the fields of multivariate 
statistics, computer science (machine learning) or 
information theory [11, 12, 13, 14]. This section recalls the 
most common methods used in biomedical applications, 
however only for the context of numerical data. Then, the 
concept of complexity reduction is usually replaced by 
dimensionality reduction, which can be understood as a 
more specific version of a general complexity reduction.

In the whole paper, we consider numerical (discrete or 
continuous) data with the dimensionality denoted as p, i.e, 
with p variables corresponding to e.g. measure symptoms 
or laboratory measurements measured over n samples 
(individuals). In general, dimensionality reduction may 
bring several important benefits: 

• Simplification of subsequent computations

• Comprehensibility (e.g. allowing to divide variables 
to clusters)

• Reduction or removing correlation among variables

• A possible improvement of the classification 
performance (which happens however only occasionally).

If p is large, and especially if p largely exceeds the number 
of observations n, numerous standard classification methods 
suffer from the so-called curse of dimensionality. They are 
either computationally infeasible or at least numerically 
unstable for such high-dimensional data [15, 16]. In such a 
case, dimensionality reduction is a necessity. We distinguish 
between supervised and unsupervised complexity reduction 
methods, where supervised ones are tailor-made for data 
coming from two or more groups, while the information 
about the group belonging is taken into account. None of the 
approach is uniformly the best across all datasets.

Variable selection methods extract a relevant subset of 
the set of the original variables. Their important examples 
include:

• Statistical hypothesis tests (which are however used 
only to rank variables in order of evidence against the null 
hypothesis, instead of computing a p-value).
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• Variable selection based on maximal conditional entropy 
(Section 5).

• MRMR variable selection (Maximum Relevance 
Minimum Redundancy) [17]. 

• Bayesian variable selection methods.

• Wrappers or filters (or embedded methods).

• t-scores corrected for marginal correlations.

Tailor-made variable selection approaches for regression 
models include:

• Lasso estimation.

• Partial least squares (Section 6).

• Linear Models for Microarrays (limma).

• Sliced inverse regression.

• Elastic net.

• Regularized discriminant analysis (RDA).

• Shrunken centroid regularized discriminant analysis 
(SCRDA).

• Smoothly clipped absolute deviation (SCAD).

Feature extraction methods search for linear (or nonlinear) 
combinations of variables, while retaining all variables in the 
model. 

Prominent examples of linear methods include:

• Principal component analysis (Section 4).

• Robust versions of principal component analysis [18].

• Factor analysis (FA).

• Linear discriminant analysis (LDA, which is however 
aimed primarily at classification).

While nonlinear include:

• Independent component analysis (ICA).

• Correspondence analysis. 

• Methods of information theory.

4 Principal Component Analysis
Principal component analysis (PCA) represents the most 

commonly used complexity reduction method in biomedical 
applications. The examples show that PCA is very often used for 
data observed in groups, although this is not suitable due to its 
unsupervised nature as investigated already by Mertens BJA [19].

4.1 Method 

The aim of PCA is to replace the total number of  n observations, 
which are p-variate, by a set of transformed n observations with 
a smaller number of variables (dimensions). Thus, the original 

variables are replaced by a small number of (say s) principal 
components, where the user may choose a suitable s fulfilling 
s<min(n,p). New s-dimensional observations represent 
mutually uncorrelated (orthogonal) linear combinations of 
the original variables with the ability to explain a large (more 
precisely the largest possible) portion of variability of the 
data [11]. 

The empirical covariance matrix S is ensured to be 
symmetric and positive semi definite with non-negative 
eigenvalues and its rank does not exceed mim(n,p). Because 
the sum of eigenvalues of a general square matrix is equal to 
the sum of its diagonal elements (i.e, its trace), this is for the 
case of a covariance matrix equal to the sum of variances of 
individual variables.

PCA may bring a remarkable reduction of computational 
costs, especially for small values of the constant s. The 
contribution of the i-th principal component (i=1,…,p), i.e, 
the component corresponding the i-th largest eigenvalue 
to the explanation of the total variability in the data can be 
expressed as the relative contribution of the corresponding 
eigenvalue. A different (not equivalent) approach may 
be based on computing principal components from the 
empirical correlation matrix, which is recommended in case 
of big differences in the variability of individual variables. 

Formally, PCA projects individual observations to 
the subspace generated by s eigenvectors of the matrix  S, 
which belong to the largest eigenvalues. Then, consequent 
computations are performed in a  space generated by these 
eigenvectors and the computations replace each observation 
by the resulting linear combinations. A popular tool for 
selecting a proper value of s is the scree plot, which is shown 
in Figure  1 for a dataset described later in Section 4.2. It 
exploits the fact that the total variability in the data is equal to 
the trace of D and thus also to the sum of the eigenvalues of S. 

Commonly, the user demands the selected principal 
components to explain at least a given percentage of the 
total variability, which formulates a requirement on the 
eigenvalues. Particularly, if the selected principal components 
should explain e.g. 80% of the total data variability, this 
means to select such number s of principal components so 
that the sum of s largest eigenvalues exceeds 80% of the sum 
of all eigenvalues. 

Standard dimensionality reduction methods suffer 
from the presence of measurement errors or outlying 
measurements (outliers) in the data [20, 21]. We may 
recommend performing multivariate methods including 
PCA by robust alternative of standard approaches. Robust 
versions of PCA, which are resistant (insensitive) to outliers, 
have been developed [18]. If robust PCA is based on eigen-
decomposition of a robust covariance matrix estimator, the 
resulting robust principal components are uncorrelated. 
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4.2 Example: Diagnostics of Cardiovascular 
Diseases

In a cardiovascular genetic study performed at the Center of 
Biomedical Informatics in Prague, headed by Prof. Jana Zvárová, 
a  research of gene expressions was performed in 2006-2011 to 
construct a decision support system based on clinical and gene 
expressions data  [22]. The microarray technology was used to 
measure average gene expressions of more than 39 thousands 
gene transcripts across the whole genome. The aim was finding 
sets of genes, which are useful in the process of diagnostics of 
(new) individuals.

As it is a typical situation in molecular genetics that there are 
thousands or tens of thousands of variables (gene expressions) 
measured on a sample of tens or hundreds (at maximum) of 
patients, we perform a dimensionality reduction at first and 
proceed to constructing a  classification rule only afterwards. 
PCA was performed for various values of s and the results reveal 
that there is no remarkable small group of variables responsible 
for a large portion of variability of the data and the first few 
principal components seem rather arbitrary. We used the simplest 
regularized version of linear discriminant analysis (LDA) [23] to 
learn a classification rule allowing assigning a new individual to 
one of the given categories according to the diagnosis. 

If s=10, the constructed classification rule was not able to 
overcome a classification accuracy of 75%. Only if the number of 
selected principal components was raised to the maximal possible 
value, which is equal to the number of observations in the data 
set, the classification accuracy in a leave-one-out cross validation 
study was able to further increase above 90%. This is the situation 
with infeasible standard LDA, but the regularized version does 
not suffer from curse of dimensionality and represents a reliable 
tool with no tendencies to overfit [23]. Results with a large s 

allowed obtaining results with a clear interpretation, because 
there seems no small set of very dominant genes, which 
would be sufficient for the subsequent classification task. On 
the other hand, there is a large number of genes with only a 
small influence on the classification task, which cannot be 
however neglected. 

The results without reducing the dimensionality to a 
small number of principal components allowed to predict 
the risk of a  manifestation of acute myocardial infarction 
or cerebrovascular stroke in the next 5 years for a particular 
patient. If he/she has already undergone an acute myocardial 
infarction, then the resulting principal components of gene 
expressions are able to predict the risk of a more severe 
prognosis or a relapse [22]. Patients with a high risk of a 
future manifestation of a  cardiovascular disease can be 
consequently monitored, which can increase the patient 
safety and lead to a more effective and safer care for patients 
with a life-threatening risk. 

4.3 Example: Face Detection 

Another example is devoted to the face detection task in 
a database of images coming from the Institute of Human 
Genetics, University of Duisburg-Essen, Germany (projects 
BO 1955/2-1 and WU 314/2-1 of the German Research 
Council) [24]. This database contains 212 grey-scale images 
of the size 192 times 256 pixels, each image corresponding 
to a  different person. The persons are volunteers in the 
age between 18 and 35 years of German origin without 
a manifested genetic disease. The images were photographed 
under standardized conditions; the faces do not differ much 
in size and are also rotated in the plane by small angles. 
Therefore, eyes are not in a perfectly horizontal position in 
such images. 

The work aimed at constructing a decision support system 
[25]. The aim was to propose a mouth detection method for 
the sake of a decision support system for the diagnostics of 
genetic diseases in children with dysmorphic faces. Thus, 
it was required to have a method which is comprehensible 
and useful also for genetic patients with a facial dysmorphia. 
From the given database of images of the whole faces, we 
manually localized and selected a  database of 212 mouths 
and 212 non-mouths of size 26x56 pixels. Particularly, a non-
mouth was selected within each image, which has the largest 
similarity with the mouth in the same image by means of the 
correlation coefficient with a  bearded template [24]. These 
images are however transformed to vectors, i.e, with length 
p=1456.

We use the projection pursuit (PP) algorithm for the 
robust PCA of [18] implemented in library pcaPP of the R 
software. The PP is a general approach for finding the most 
informative directions or components for multivariate (high-
dimensional) data. Such dimensionality reduction is based 

Figure 1. 30 largest eigenvalues of the matrix S in the example of 
Section 4.2.
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on a robust measure of spread of the data, taking into account 
the outlyingness of each data point. Candidate directions for the 
principal components are selected by a grid algorithm optimizing 
such objective function only in a  plane, while the subsequent 
components are added in the later steps. 

We computed 5 main principal components from the mouths 
and non-mouths by the PP algorithm. As the robust method 
allows to identify the outliers, we have revealed more reliable 
data point in the top part of the images, corresponding to the 
face parts above and aside from the lips. On the other hand the 
(potential) outliers are located on the boundary of the mouth or 
in the bottom part of the images in the area between the mouth 
and the chin.

Further, the classification task itself is solved by the standard 
quadratic discriminant analysis (QDA), which would not be 
otherwise feasible for high-dimensional data with a number of 
variables exceeding the number of observations. The classification 
with QDA yields a correct performance of 100% in a leave-one-
out cross validation study, which represents a standard attempt 
for an independent validation [26].

5 Variable Selection based on Maximal 
Conditional Entropy

An important class of supervised variable selection 
procedures is based on principles of the information theory. 
This section recalls a stepwise variable selection approach based 
on maximizing conditional entropy. Such approach was applied 
within a prototype of a system for clinical decision support 
of  [22]. We investigated the performance of the system again 
on the molecular genetic data from the Center of Biomedical 
Informatics (2006-2011).

5.1 Method 

Data observed in two groups are considered. The method 
is able to reduce the set of all variables by a  forward procedure 
optimizing a decision-making criterion. We consider a set of 
variables and the classification rule should be based on them 
over a training dataset. We define Y as an indicator variable, 
assuming that it equals 1 if and only if a given sample belongs 
to the first group. We understand Y as a binary response of the 
observed variables, which play the role of regressors; these must 
be however categorized, i.e, replaced by categorical variables with 
at most 4 categories.

It will be necessary to measure the contribution of a  given 
variable (say X) to explaining the uncertainty in the response. 
This will be quantified by means of the conditional Shannon 
information. The first selected variable maximixes the conditional 
Shannon information with the response among all variables i.e, is 
the most relevant variable for the classification task. Further on, 
selecting the variables may be described in the following way. If 
variables X1,..,Xs  have been already selected as the most relevant 
s variables, the next variable (say Xs+1) is selected as that variable 
fulfilling the requirement.

( ) ( ) ( )1 1 1, , ,    , , , ,                              1| |s s sd Y X X X max d Y X X X+… = …

where all variables X not present in the set {X1,…,Xs} 
are considered. The expression d in (1) is the conditional 
Shannon information. Thus, a  variable very relevant for 
the classification task is chosen taking into account the 
dependence of the selected variables. Finally, only such 
variables for the consequent classification analysis are 
considered, which contribute to explaining more than a 
given percentage of the inter-class variability of the data; the 
choice for this percentage will be discussed in the example of 
Section 5.2.

5.2 Example: System SIR 

A protototype of a clinical decision support system 
called SIR (System for selecting relevant Information for 
decision suppoRt) was proposed and implemented in [22], 
exploiting a  sophisticated variable selection component. It 
contains various tools of supervised learning methods to 
learn the sophisticated classification rule in order to support 
a  diagnostic decision making The main advantage of the 
system is suitability also for high-dimensional data obtained 
e.g. in molecular genetic studies. 

The system SIR can be described as an easy-to-use 
web-based generic service devoted to data collection and 
decision support with a sophisticated information extraction 
component. It is proposed for being used mainly for general 
practitioners in the primary care, but it is able to handle data 
from any area of medicine. The decision making of the SIR 
requires data from a (sufficiently large) clinical study in order 
to construct the optimal classification rule for the decision 
making problem. 

Data collected within a clinical study represent the 
training database of the SIR, which can import the whole data 
set from a clinical study automatically together with a data 
model. The maximum entropy variable selection of Section 
5.1 is used. All variables selected by the variable selection 
procedure are required to enter the decision support system, 
which can be performed through the automatically generated 
interface from an electronic health record (EHR) or health 
information system (HIS), although a manual input of data 
is also possible.

The clinician must specify the prior diagnosis before 
entering the data to the SIR, because he/she is the only one 
to carry the legal responsibility for the clinical decision. Now 
the SIR can be used through the web service to obtain a 
diagnosis support. Then, the clinician is asked to manually 
select his/her final decision and only if it is not in accordance 
with the SIR, the clinician writes a short text justifying the 
decision. The system allows quantifying the influence of 
an  additional examination (variable) on the diagnostic 
decision. Additionally, the dimension reduction procedure 
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may be extended to consider also costs of obtaining each clinical 
or laboratory measurement. 

The prototype of the system SIR was verified on a  different 
data set from set from the previously described cardiovascular 
genetic study [22]. Clinical and gene expression measurements 
were measured on 59 patients with infarction, 45 patients having 
a  cerebrovascular stroke, and 77 control persons without a 
manifested cardiovascular disease. 

If no dimensionality reduction is performed, a  regularized 
LDA yields the classification accuracy 0.85, which is defined as 
the percentage of correctly classified samples. 

We applied the variable selection described in Section 5.1 to 
the set of 8 personal and clinical variables. Requiring that the 
selected variables contribute to at least 90% of the intra-class 
variability of the whole set, we selected 5 variables. At the same 
time, the variable selection was applied to the set of more than 
39 000 gene transcripts, where 245 of them were selected again 
based on the requirement to contribute to more than 90% of the 
variability. The classification accuracy in a leave-one-out cross 
validation study with the 5 variables and 245 genes is equal to 
0.85, while it drops to 0.65 if 5 variables are used with 10 genes 
selected by a MRMR [17] variable selection. These results were 
obtained with a support vector machine classifier with a Gaussian 
kernel, which outperforms a number of other standard classifiers.

6 Partial Least Squares
Partial least squares (PLS, also projection to latent structures) 

can be presented as a  supervised dimensionality reduction 
connected with a regression or classification method [12]. While 
the PLS is a common method in biomedical or chemometric 
applications, the method for parameter estimation is more 
complicated compared to other standard methods of multivariate 
statistics. The method replaces original variables by new ones, 
which will be denoted as latent variables, although they are 
commonly denoted also as principal components or predictive 
components. A real data set will be described first, which was 
selected as an example of a study, for which the PLS represents 
a suitable tool, while general principles of the method will be 
overviewed afterwards.

6.1  Example: Toxicity of Rat Liver

Let us consider gene expression data from the liver toxicity 
experiment of [27] in which the total number of n=64 rats was 
exposed to acetaminophen. The structure of the data is shown 
in Table 1. The rats were divided to 4  groups. A  necropsy was 
performed on the liver of each rat, while it was performed 6 hours 
after exposure in the first group, 18 hours in the second group, 
24 in the third and finally 48 hours in the fourth group. The data 
set contains gene expressions measured for p=3116 selected 
genes on each of the rats. These data were already pre-processed 
and normalized in a standard way and the remains to learn a 
classification rule based on the data.

Figure 2. Graph of the association between two latent (predictive) 
components computed by PLS-DA in the example of Section 
6.1, where the contribution of individual observations to one 
of the groups is given by the shape (circle, square, triangle, and 
rhombus).

The analysis of the data observed in this experiment 
requires learning a classification rule allowing to assign a 
new observation to one of the four given groups according 
the time interval between the exposition and necropsy. Its 
intrinsic dimensionality reduction remarkably simplifies 
the classification, which is illustrated in Figure 2 depicting 
two major latent variables computed by the PLS-DA. The 
PLS method allows to visualize the results. In regression 
tasks, the contribution of individual latent variables to the 
variability of the response may be evaluated. In classification, 
the contribution of latent variables to the separation among 
the groups may be evaluated. This is a similar property with 
the PCA, where the contribution of individual principal 
components to the variability of the original data may be 
evaluated, as explained in Section 4.1. 

In the example only two of these latent variables are 
sufficient to construct a reliable classification rule practically 
with any classification method. The classification to four 
groups with QDA attains 100% in a  leave-one-out cross-
validation study.     

Rat Time to 
necropsy Gene 1 … Gene 3116

1 6 0.051 … -0.034

2 6 0.015 … -0.079

… … … … …

64 48 -0.014 … -0.017

Table 1. Data on the toxicity of rat liver in the example of section 6.1.
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6.2 Method 

The PLS was originally proposed for the linear regression 
model. Thus, the regression version of the PLS remains to be 
commonly denoted as PLS-R. Formally, PLS-R exploits the 
standard linear regression model, where Y can be a matrix 
corresponding to a multivariate response explained by regressors 
X. The PLS-R method combines the regression task (parameter 
estimation) with dimensionality reduction in the following way. 
It searches for the optimal set of latent variables for regressors 
and also an analogous set for the multivariate response. Instead 
of X and Y, their linear combinations are considered, which have 
a smaller dimensionality but the maximal mutual covariance.

Various numerical studies indicated the suitability of the 
PLS-R method in some applications, especially if one or more of 
the following situations are true:

• The model suffers from multicollinearity.

• p is large.

• The errors e has a large variability.

Commonly, the PLS method in the regression version is used 
also for solving classification tasks with the aim to construct a 
classification rule allowing to assign a new observation to one of 
K (K>2) groups. In the situation K>2, however, it is unsuitable to 
consider the response in the form of a single variable with values 
in the set {1,2,…,K}.

Therefore, a special PLS version combining dimensionality 
reduction with classification into K>2 groups. It has been 
denoted as PLS-DA or D-PLS to stress the discrimination 
(i.e,  classification) context  [16, 28]. The training p-dimensional 
observations are considered. The (multivariate) response is 
considered as a block of indicators, while the are only K-1 of them 
for K groups. A given observations, if belonging to the k-th group 
with k ≤ K-1, has only the k-th coordinate of the response to be 
equal to 1 and the remaining coordinates are zero. If k=K, then all 
its K-1 coordinates are equal to 0. The resulting model remains to 
be again the standard linear regression model, where X plays the 
role of the matrix of regressors and Y represents the multivariate 
response with the total number of K-1 indicators.

The PLS-DA method searches for the optimal transform 
(linear combination) of regressors as well as responses so that the 
resulting latent variables allow the maximal possible separation 
among the K groups. To estimate the parameters of the model 
requires solving an  optimization problem, which maximizes 
the covariance between the set of regressors and the set of 
responses. The resulting latent variables are predictive, i.e, able 
to discriminate among the groups in the optimal way. At the 
same time, the contribution of individual original variables to the 
construction of the classification rule has a clear interpretation.

Important properties of the PLS are common for the 
regression and classification version:

• The result of the computation depends to some 
extent to the choice of the algorithm

• A suitable number of latent variables are commonly 
found by a cross-validation, although it may have a tendency 
to overfitting.

Some special versions of the PLS have been proposed more 
recently, including PLS-EDA (PLS-enhanced discriminant 
analysis) or OPLS (orthogonal PLS), where the latter offers 
the same prediction ability as the standard PLS but improves 
the interpretation. Intensive attention has been paid to the 
study of assumptions under which the PLS yields better 
results compared to those obtained with a combination of 
the PCA with one of standard classifiers. 

The PLS methodology resembles that of canonical 
correlation analysis, while the first maximizes the covariance 
but the latter is focuses on correlations. Their relationship 
was investigated by Sun L et al. [29], who showed their 
equivalence in a special case with orthonormalized PLS.

7 Hypothesis Testing 
Hypothesis testing (e.g. a two-sample test) is often 

desirable for molecular genetic data to find a  set of 
differentially expressed genes. Some recent tests for high-
dimensional were overviewed in [16]. Here, we discuss briefly 
some important approaches to testing high-dimensional 
data. It is nevertheless useful to point out that testing may 
not be always the aim of the analysis (if the user prefers 
a classification rule from a test). Another drawback of simple 
testing by a repeated using of standard tests is their increase 
in the probability of type I error due to repeating testing. If 
there is a large number of samples n in the data, there is also 
a clear  tendency for the power of the tests to increase and 
thus nearly every hypothesis test yields a  significant result. 
Let us now review three important classes of tests for high-
dimensional data.

One class includes tests based on regularization (shrinkage 
estimation), including the approach of [30]. It replaces all 
high-dimensional matrices (mainly the covariance matrices) 
by regularized counterparts and thus a shrinkage Hotelling 
test is based on a  regularized version of the Mahalanobis 
distance.

Another class of tests of [31] represents a combination of 
testing with a  linear dimensionality reduction. Tests based 
on linear scores or principal components (i.e, performed 
on results of LDA or PCA, respectively) are exact tests for 
normally distributed data. Using the theory of spherical 
distributions, the tests keep the significance level on the 
selected 5 % and follow exactly the t- or F-distribution if 
the variable selection based appropriately performed on the 
unsupervised data. 
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The most recent class of tests is based on interpoint distances. 
Tests based on a nonparametric combination of dependent 
interpoint distances are consistent and unbiased for high-
dimensional data even without the assumption of normally 
distributed data [32, 33].
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