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Abstract 

Background: Automating the recognition of outcomes reported 

in clinical trials using machine learning has a huge potential of 

speeding up access to evidence necessary in healthcare decision 

making. Prior research has however acknowledged inadequate 

training corpora as a challenge for the Outcome detection (OD) 

task. Additionally, several contextualised representations 

(embeddings) like BERT and ELMO have achieved unparalleled 

success in detecting various diseases, genes, proteins and 

chemicals, however, the same cannot be emphatically stated for 

outcomes, because these representation models have been 

relatively under tested and studied for the OD task. 

Methods: We introduce “EBM-COMET”, a dataset in which 300 

Randomised Clinical Trial (RCT) PubMed abstracts are expertly 

annotated for clinical outcomes. Unlike prior related datasets that 

use arbitrary outcome classifications, we use labels from a 

taxonomy recently published to standardise outcome 

classifications. To extract outcomes, we fine-tune a variety of 

pre-trained contextualised representations, additionally; we use 

frozen contextualised and context-independent representations in 

our custom neural model augmented with clinically informed 

Part-Of-Speech embeddings and a cost-sensitive loss function. 

We adopt strict evaluation for the trained models by rewarding 

them for correctly identifying full outcome phrases rather than 

words within the entities i.e. given an outcome phrase “systolic 

blood pressure”, the models are rewarded a classification score 

only when they predict all 3 words in sequence, otherwise they 

are not rewarded. 

Results and Conclusion: We observe our best model 

(BioBERT) achieve 81.5% F1, 81.3% sensitivity and 98.0% 

specificity. We reach a consensus on which contextualised 

representations are best suited for detecting outcome phrases 

from clinical trial abstracts. Furthermore, our best model out 

performs scores published on the original EBM-NLP dataset 

leader-board scores. 
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1. Introduction 

There is growing recognition of the potential benefits of using 

readily available sources of clinical information to support 

clinical research [1]. Of particular importance is the 

identification of information about outcomes measured on pa- 

tients, for example, blood pressure, fatigue, etc. The ability to 

automatically detect outcome phrases contained within clinical 

narrative text will serve to maximise the potential of such 

sources. For example, hospital or GP letters, or free text fields 

recorded within electronic health records, may contain valuable 

clinical information which is not readily accessible or analysable 

without manual or automated extraction of relevant outcome 

phrases. Similarly, automated identification of outcomes 

mentioned in trial registry entries or trial publications could help 

to facilitate systematic review processes by speeding up outcome 

data extraction. Furthermore, the benefits of automated outcome 

recognition will be increased further if it extends to 

categorisation of outcomes within a relevant classification 

system such as taxonomy proposed in [2]. The potential 

contribution of Natural Language Processing (NLP) to EBM [3] 

has been limited by the scarcity of publicly available annotated 

corpora [4] and the inconsistency in how outcomes are described 

in different trials [2, 5, 6]. Nonetheless, rapid advancement in 

NLP techniques has accelerated NLP-powered EBM research, 

enabling tasks such as detecting elements that collectively form 

the basis of clinical questions including Participants/population 
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(P), Interventions (I), Comparators (C), and Outcomes (O) [7]. I 

and C are often collapsed into just I [4, 8, 9]. 

EBM-NLP corpus [4] is the only publicly available corpus that 

can support individual outcome phrase detection. However, this 

dataset used an arbitrary selection of outcome classifications 

despite being aligned to Medical Subject Headings (MESH)1. 

Moreover, it contains flawed outcome annotations [10] such as 

measurement tools and statistical metrics incorrectly annotated as 

outcomes and others which we mention in section 2.7. 

In this work, we are motivated by the outcome taxonomy 

recently built and published to standardise outcome 

classifications [2]. We work closely with experts to annotate out- 

comes with classification drawn from this taxonomy. Several 

variations of state-of-the-art (SOTA) CLMs that include 

BioBERT [11], SciBERT [12], ClinicalBERT [13] and others 

have recently emerged to aid clinical NLP tasks. Despite their 

outstanding performance in multiple clinical NLP tasks such as 

BNER [14, 15] and relation extraction [16], they have been 

underutilised for the outcome detection task, mainly because of 

inadequate corpora [4]. Given that, clinical trial abstracts (which 

report outcomes) are part of the medical text on which these 

CLMs are pre-trained, we leverage transfer learning (TL) and 

make full use of them to achieve individual outcome detection. 

The goal in the outcome detection task is to extract outcome 

phrases from clinical text. For example, in a sentence, “Among 

patients who received sorafenib, the most frequently reported 

adverse events, were grade 1 or 2 events of rash (73%), fatigue 

67%, hypertension (55%) and diarrhea (51%)”, we extract all 

outcome phrases such as those underlined and in bold font.   This 

enables those searching the literature including patients and 

policy-makers to identify research that addresses the health out- 

comes of most importance to them [17]. Following previous 

studies that investigated which embeddings are best suited for 

clinical-NLP text classification tasks [18], we focus this work on 

probing for some consensus amongst various SOTA domain-

specific CLM embeddings, determining which embeddings are 

best suited for outcome detection. A summary of our 

contributions includes, 

1. We introduce a novel outcome dataset, EBM-COMET, in 

which outcomes within randomised clinical trial (RCT) abstracts 

are expertly annotated with outcome classifications drawn from 

[2]. 

2. We assess the performance of domain-specific (clinical) 

context-dependent representations in comparison to generic 

context-dependent and context-independent representations for 

the outcome detection task. 

3. We assess the quality in detecting full mention of out- come 

phrases in comparison to detection of individual words contained 

in outcome phrases. Ideally, given an outcome phrase “systolic 

blood pressure”, full outcome phrase evaluation strictly rewards 

 
1 https://www.nlm.nih.gov/mesh/ 

models for correctly detecting all 3 words in that sequence (exact 

match), whereas word-level evaluation rewards models for cor- 

rectly detecting any single word in phrase. The former is 

particularly informative for the biomedical domain audience [19]. 

4. We compare the performance of the CLMs in our 

experimental setup to the current leader-board performance on 

extracting PICO elements from the original EBM-NLP dataset 

[4]. 

2. Related Work 

2.1 Outcome detection 

Outcome detection has previously been simultaneously achieved 

along with Participant and Intervention detection, where 

researchers aim to classify sentences (extracted from RCT 

abstracts) into one of P, I and O labels [8, 20, 21]. Despite being 

restrained by shortage of expertly labeled datasets, few attempts 

to create EBM-oriented datasets have been made. Bryon et al., 

[20] use distant supervision to annotate sentences within clinical 

trial articles with PICO elements. Dina et al., [22] use an 

experienced Nurse and a medical student to annotate outcomes 

by identifying and labeling sentences that best summarize the 

consequence of an intervention. Similarly, other attempts have 

precisely segmented PubMed abstracts into sentences that they 

label one of P, I and O [8, 9]. Given the sentence-level 

annotation adopted in these datasets, it becomes difficult to use 

them for tasks that require extraction of individual PICO 

elements [23, 24] such as outcome phrase detection. Nye et al., 

[4] recently released EBM-NLP corpus that they built using a 

mixture of crowd workers (non-experts) and expert workers 

(with the non-experts being exceedingly more) to annotate 

individual spans of P, I, O elements within clinical trial articles. 

This dataset has however been discovered with annotation flaws 

[10] and uses arbitrary outcome classification labels as discussed 

in section 3.1.2. Cognizant of the growing body of research to 

standardise classifications of outcomes, we are motivated to 

annotate a dataset with outcome types drawn from a standardised 

taxonomy. 

2.2 Transfer Learning (TL) 

TL is a machine learning (ML) approach that enables usage of a 

model to achieve a task that it was not initially built and trained 

for [25]. Usually, the assumption is that, train and test data for a 

specific task exists, however this is never the case, therefore, TL 

allows learning across different task domains i.e. the term pre-

trained, implies a model was previously trained on a task 

different from the current target task. Context-dependent 

embeddings such as context2vec [26], ELMo [27] and BERT 

[28] have emerged and outperformed context-independent 

embeddings [29, 30] in various downstream NLP tasks. 

Bert variants, SciBERT [12] and ClinicalBERT [13] yielded 

performance improvements in the BNER tasks on the BC5DR 

dataset [16, 31], text-classification tasks like Relation extraction 

on the ChemProt [32] and on PICO extraction. Despite being 

https://www.nlm.nih.gov/mesh/
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pre-trained on English biomedical text, BioBERT [11] 

outperformed generic BERT model (pre-trained on Spanish 

biomedical text) in PharmaCoNER, a multi-classification task for 

detecting mentions of chemical names and drugs from Spanish 

biomedical text [25]. Recently Qiao et al., [33] discovered that, 

in comparison to BioBERT, BioELMo (Biomedical ELMo) 

better clustered entities of the same type such as, an acronym 

having multiple meanings or a homonym. For example, unlike 

BioBERT, BioELMo clearly differentiated between ER referring 

to “Estrogen Receptor” and ER referring to “Emergency Room” 

in their work. 

3. Materials and Methods 

We design two setups in our assessment approach, where  

 (1) we fine-tune pre-trained biomedical CLMs on the out- come 

datasets EBM-COMET (introduced in this paper) and EBM-

NLPrev (a revised version of the original EBM-NLP [10]) and 

(2) we augment a neural model to train frozen biomedical 

embeddings. The aim is to compare the evaluation performance 

of fine-tuned, frozen biomedical CLM em- beddings, generic 

CLM embeddings and traditional context- independent 

embeddings such as word2Vec [29] in the out- come detection 

task defined below. 

Outcome Detection Problem (ODP) Task: Given a sentence 𝑠 

of 𝑛 words, 𝑠 = 𝑤𝑛 , … , 𝑤𝑛 within an RCT abstract, outcome 

detection aims to extract an outcome phrase 𝑏 =  𝑤𝑥 , … , 𝑤𝑑 

within 𝑠, where 1 ≤ 𝑥 ≤ 𝑑 ≤  𝑛. In order to extract outcome 

phrases such as b, we label each word using “BIO” tagging 

scheme [34] tags where “B” denotes the first word of the 

outcome phrase, “I” denotes inside the outcome phrase and “O” 

denotes all non-outcome phrase words. 

3.1 Data 

3.1.1 EBM-COMET 

EBM-COMET is prepared to facilitate outcome detection in 

EBM. Our annotation scheme adopts a widely acknowledged 

outcome definition of “a measurement or an observation used to 

capture and assess the effect of treatment such as assessment of 

side effects (risk) or effectiveness (benefits)” [35]. 

Previous EBM dataset construction efforts have lacked a 

standard classification system to accurately inform their anno- 

tation process and instead opted for arbitrary labels such as those 

terms aligned to MeSH [4]. We however leverage an outcome 

taxonomy recently developed to standardise outcome reporting in 

electronic databases [2]. The taxonomy authors iteratively 

reviewed how core outcome sets (COS) studies within the Core 

Outcome Measures in Effectiveness Trials (COMET) database 

categorised their outcomes. This review culminated into a 

taxonomy of 38 outcome domains hierarchically classified into 5 

outcome types/core areas. 

 

 

Data collection 

Using the Entrez API [36], we automatically fetch 300 abstracts 

from open access PubMed. Our search criteria only retrieve 

articles of type “Randomised controlled Trial”. We relied on two 

domain-experts to review these abstracts and eliminate those 

reporting outcomes in animals (or non-humans). Each eliminated 

abstract was replaced by another reporting human outcomes from 

PubMed. 

Annotation 

The two experts we work with have sufficient experience in 

reviewing human health outcomes in clinical trials.   Some of 

their work pertaining to outcomes in clinical trials includes [35, 

37-39]. These experts jointly annotate granular outcomes within 

the gathered abstracts resulting into EBM-COMET using 

guidelines below. We are aware of annotation tools such as 

BRAT [40], however because of the nature of the annotations i.e. 

some with contiguous outcome spans, the experts prefer to 

directly annotate them in Microsoft text documents. 

Annotation guidelines 

The annotators are tasked to identify and verify outcome spans 

and then assign each an outcome domain referenced from the 

taxonomy partially presented in Table 1 and full presented in 

Appendix C. The annotators are instructed to assign each span all 

relevant outcome domains. 

Annotation heuristics 

For annotation purposes, we firstly assign a unique symbol to 

each outcome domain (domain symbol column in Table 1). The 

annotators are then instructed to use these symbols to label the 

outcome spans they identify. Annotation using these symbols 

rather than the long domain names is less tedious. Furthermore, 

we instruct annotators to use xml tags to demarcate the spans, 

such that an identified span is enclosed within an opening tag 

with the assigned domain symbol and a closing tag. We refer to 

easily identifiable outcome spans as simple annotations, and the 

more difficult ones requiring more demarcation indicators as 

complex annotations. Figure 1 show examples of the annotations 

described below, 

1. Simple annotations 

a) <P XX> . . . </>: Indicates an outcome belongs to 

domain XX (where XX can be located in the taxonomy 

1). 

b) <P XX, YY> . . . </>: Indicates an outcome belongs to 

both domains XX and YY. 

2. Complex annotations 

Some spans are contiguous in such a way that, they share a word 

or words with other spans. For example, two outcomes can easily 

be annotated as a single outcome because they are conjoined by a 

dependency word or punctuation such as “and”, “or” and 

commas. We are however fully aware, that this contiguity 

previously resulted in multiple outcomes annotated as a single  
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Figure 1: Sample annotations of outcomes depicting the annotation style with each example showing the outcome span and its 

assigned outcome domain label. 

 

Core area Outcome domain Domain 

Symbol 

Physiological/Clinical Physiological/Clinical P 0 

Death Mortality/survival P 1 

Life Impact Physical Functioning 

Social Functioning 

Role functioning 

Emotional 

Functioning/wellbeing 

Cognitive Functioning 

Global quality of life 

Perceived health status 

Delivery of care 

Personal circumstances 

P 25 

P 26 

P 27 

P 28 

 

P 29 

P 30 

P 31 

P 32 

P 33 

Resource use Economic 

Hospital 

Need for further 

intervention 

Societal/carer burden 

P 34 

P 35 

P 36 

 

P 37 

Adverse events Adverse events/effects P 38 

Table 1: A partial version of the taxonomy of outcome classifica- 

tions developed and used by [1] to classify clinical outcomes ex- 

tracted from biomedical articles published in COMET, Cochrane 

re- views and clinical trial registry. (Full taxonomy in Appendix 

C) 

outcome in previous datasets [10]. Therefore, annotators are 

asked to distinctively annotate them as below, 

a) Contiguous spans sharing bordering term/s appearing at 

the start of an outcome span should be annotated as 

follows, 

 

<P XX>(S#) . . . <P XX> . . . </>: which indicates that, 

two outcomes are belonging to domain XX that share # 

of words at the start of the annotated outcome span. 

b) Contiguous spans sharing bordering term/s appearing at 

the end of an outcome span, should be annotated as 

follows, 

 

<P XX>(E#) . . . <P XX>. . . </>: The opposite of the 

notation above indicating that, two outcomes are 

belonging to domain XX that share # of words at the 

end of the annotated outcome span. 

 

Annotation consistency and quality 

In the last phase of the annotation process, the annotations are 

extracted into a structured format (excel sheet) for the annotators 

to review them, make necessary alterations based on their 

expertise judgment as well as handle minor errors (such as wrong 

opening or closing braces) that result from the manual annotation 

processes. We do not report inter-annotator agreement because 

the two annotators did not conduct the process independently, but 

rather jointly. Having previously worked together on similar 

annotation tasks, they hardly disagreed but whenever either was 

uncertain or disagreed, they discussed between themselves and 

concluded. 

The word, outcome phrase distribution and other statistics of the 

EBM-COMET are summarized in Table 4 with the experimental 

dataset statistics. 

3.1.2 EBM-NL𝐏𝐫𝐞𝐯 

This dataset is a revision of the original hierarchical label’s 

version of EBM-NLP dataset [4]. In the hierarchical labels 

version, the annotated outcome spans were assigned specific 

labels that include Physical, Pain, Mental, Mortality and Ad- 

verse effects. Abaho et al., [10] built EBM-NLPrev using a semi-

automatic approach that involved POS-tagging and rule-based 

chunking to correct flaws discovered (by domain-experts) in 

EBM-NLP. In the evaluation of this revision, classification of 

outcomes resulted in a significant increase in the F1-score (for all  
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Figure 2: BNER for token-level outcome phrase detection, for two setups, left: Fine-tuning and right Feature extraction using ODP-tagger 

 

Model Biomedical  

Variant 

Pre-trained on 

Bert BioBERT [1] 4.5B words from PubMed 

abstracts + 13.5B words from 

PubMed Central (PMC) 

articles. 

 SciBERT [2] 1.14M Semantic scholar 

papers [3] (18% From 

Computer science and 82% 

from biomedical domains). 

 ClinicalBERT 

[4] 

2 million notes in the MIMIC-

III v1.4 database [5] (hospital 

care data recorded by nurses). 

(Bio+ClinicalBERT 

BERT is BioBERT pre-trained 

on the above notes) 

 DischargeSumm 

aryBERT [4] 

Similar to ClinicalBERT but 

only discharge summaries are 

used (Bio+DischargeSummary 

BERT is BioBERT pre-trained 

on the summaries) 

ELMo BioELMo [6] 10M PubMed abstracts (ca. 

2.64B tokens) 

FLAIR Bio FLAIR [7] 1.8m PubMed abstracts 

Table 2: A catalogue of CLMs used for the outcome 

detection task. 

labels) from what it was when using the original EBM-NLP. 

Some of the major flaws they corrected include, 

• Statistical metrics and measurement tools annotated 

as part of clinical outcomes e.g. “mean arterial 

blood- pressure” instead of “arterial blood-

pressure”, “Quality of life Questionnaire” instead of 

“Quality of life”, “Work-related stress scores” instead 

of “Work-related stress”. 

• Multiple outcomes annotated as a single outcome e.g. 

“cardiovascular events-(myocardial infarction, 

stroke and cardiovascular death)” instead of 

“myocardial infarction”, “stroke”, and 

“cardiovascular death”. 

• Inaccurate outcome type annotations e.g., “Nausea 

and Vomiting” labeled as a Mortality outcome instead 

of a Physical outcome. 

• Combining annotations in non-human studies with 

those in human-studies particularly studies reporting 

out- comes in treating beef cattle. 

3.2 Biomedical contextual language models 

We leverage the datasets to investigate the ODP task 

performance of 6 different biomedical CLMs (Table 2) 

derived from 3 main architectures. 1) BERT [28], a CLM 

built by learning deep bidirectional representations of input 

words by jointly incorporating left and right context in all its 

layers. It works by masking a portion of the input words and 

thereby predicting missing words in each sentence. BERT 

encodes a word by incorporating information about words 

around it within a given input sentence using a self-attention 

mechanism [41] 2) ELMo [33] is a CLM that learns deep 

bidirectional representations of input words by jointly 

maximizing the probability of forward and backward 

directions in a sentence, and 3) FLAIR [42], a character-level 

bidirectional LM which learns representations of each 

character by incorporating character information around it 

within a sequence of words. 

We begin by further training the pre-trained CLMs in Table 2 

in a fine-tuning approach [43], where the CLMs learn to (1) 

encode each word 𝑤𝑖  into a hidden state ℎ𝑖 and (2) predict 

the correct label given ℎ𝑖. Similar to Sun et al. [25], we 

introduce a non-linear softmax layer to predict a label for 

each ℎ𝑖 corresponding to word 𝑤𝑖 ,  
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Fine-tuning Feature extraction 

Model EBM-NLPrev EBM-COMET Model EBM-NLPrev EBM-COMET 

W2V 
 

- 
 

- 
ODP-tagger + W2V 44.0 59.3 

BERT 51.8 75.5 +BERT 43.2 64.2 

ELMO 49.6 71.4 +ELMO 43.0 61.2 

BioBERT 53.1 81.5 +BioBERT 48.5 69.3 

BioELMo 52.0 75.0 +BioELMo 46.5 62.9 

Bio FLAIR 51.4 76.7 +Bio FLAIR 40.7 60.5 

SciBERT 52.8 77.6 +SciBERT 48.1 70.4 

ClinicalBERT 51.0 68.5 +ClinicalBERT 45.2 65.7 

Bio+ClinicalBERT 51.0 68.3 +Bio+ClinicalBERT 45.8 66.3 

Bio+Disc Summary 

BERT 
51.0 70.0 +Bio+Disc Summary 46.1 68.4 

Table 3: Macro-average F1 scores obtained from generic CLMs and their respective In-domain (biomedical) versions for both 

fine-tuning and ODP-tagger (feature extraction) for token-level detection of outcome phrases from both datasets. 

 

. EBM-COMET EBM-NLPrev 

# of sentences 5193 40092 

# of train/dev/text 

sentences 

3895 / 779 / 519 30069 / 6014 / 4009 

# of outcome 

labels 

5 6 

# of sentences with 

outcome phrases in 

train/dev/test  

1569 / 451 / 221 12481 / 4116 / 3257 

Avg # tokens per 

train/dev/test 

sentences 

20.6 / 21.5 / 21.2 25.5 / 26.4 / 25.6 

Avg # outcome 

phrases per 

sentence in 

train/dev/test 

0.69 / 0.78 / 0.71 0.44 / 0.38 / 0.45 

Table 4: Statistics summary of experimental datasets splits. 

Figures pertaining to Train, Dev and Test sets are separated 

by a forward slash accordingly. 

as shown in Figure 2, where ℎ𝑖 = CLM(𝑤𝑖), {BERT-

variants, BioELMo, BioFLAIR}∈ CLM. (see Appendix A.1 

(Fine-tuning) for more details). 

3.3 ODP-tagger 

We build ODP-tagger to not only assess context-

independent (W2V) representations, but also assess the 

performance of frozen context-dependent representations 

for the ODP task. Demonstrated by the dotted line from 

Fine-tuning to input tokens in Figure 2, is a feature 

extraction [44] approach, where the tagger’s embedding 

layer takes as input, a sequence of tokens (sentence) and a 

sequence of POS terms corresponding to the tokens. We 

add a POS feature for each token to enrich the model in a 

manner similar to how prior neural classifiers are enhanced 

with character and n-gram features [45]. Each word/token 

is therefore represented by concatenating either a pre- 

 

trained CLM or a W2V embedding 𝑤 and a randomly 

initialised embedding for the corresponding POS term 𝑝. 

The token embeddings are then encoded to obtain hidden-

states for each sequence position as shown in (1), 

 ℎ𝑖 = 𝛼(𝐖[𝑤𝑖 ; 𝑝𝑖] + 𝑏) (1) 

 

where 𝑤𝑖 ∈ 𝐄𝑤and 𝑝𝑖 ∈ 𝐄𝑝, {𝐸𝑤 , 𝐸𝑝} ∈ ℝ𝑛×𝑑 denote Word 

and POS matrices each containing 𝑑-dimensional embeddings 

for n words and n corresponding POS terms, 𝑤𝑖  and 𝑝𝑖  are the 

word and POS embeddings representing the 𝑖𝑡ℎ word and its 

POS term, ; implies a concatenation operation and then α is a 

linear activation function that generates hidden states for the 

input words. We then use a condition random field (CRF) 

layer for classification given the hidden state hi. A CRF is an 

undirected graphical model which defines a conditional 

probability distribution over possible labels [46]. All the 

models are each trained to maximize the probability of the 

labels given each word 𝑤𝑖 ∈ 𝑠. 
 

 
argmax𝑃(𝑦𝑖|𝑤𝑖 ; θ) 

 
(2) 

The training objective is, 

 𝑙𝑜𝑠𝑠 =  −β ∑ ∑ 𝑝(𝑦𝑖|𝑤𝑖)

𝑛

𝑖(𝑆,𝐿)∈𝑇

 (3) 

where β is a scaling factor that empirically sets each labels 

weights to be inversely proportional to the square root of label 

frequency I.e.  𝛽 =
1

√𝑁𝑦
 and 𝑁𝑦 is the number of training 

samples with ground-truth label 𝑦. 𝑇 is the training set 

containing sentences, 𝑤𝑖 ∈ 𝑆 and 𝑦 ∈ 𝐿. 
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3.4 Training 

All models are evaluated on the two datasets discussed in 

section 3.1. These datasets are each partitioned as follows, 

75% for training (train), 15% for development (dev.) and 10% 

for testing (test). We exploit the large size of EBM-NLP and 

use its dev set to tune hyper parameters for the ODP-tagger 

and fine-tuned models (Parameter settings in Appendix B). 

Each model is trained on a train split of a particular dataset 

and evaluated on the corresponding test split culminating into 

results shown in Table 3. We use a simple powerful NLP 

python framework called flair22 to extract word embeddings 

from all the BERT and FLAIR variants, and AllenAI33 for 

BioELMo. Dimensions of the extracted Bio FLAIR and 

BioELMo embeddings are very large, i.e. 7672 and 3072 

respectively, which would most likely over whelm our 

memory and power-constrained devices during training. 

Therefore, we apply Principal component Analysis (PCA) 

dimensionality reduction technique to reduce their dimensions 

to half their original sizes while preserving se- mantic 

information [47]. Alongside these embeddings, we evaluate 

context-independent embeddings which we obtain by training 

word2vec (W2V) embedding algorithm [29] on 5.5B tokens of 

PubMed and PMC abstracts. Python and Pytorch [48] deep 

learning framework are used for implementation, which 

together with the datasets are made publicly available here 

https://github.com/MichealAbaho/ODP-tagger. 

3.5 Evaluation results 

Results shown in Table 3 firstly reveal the superiority of fine-

tuning the CLMs in comparison to the ODP-tagger. The best 

performance across both set-ups is obtained when BioBERT is 

fine-tuned on the EBM-COMET dataset. However, we 

observe SciBERT outperform it in the ODP-tagger set-up on 

the EBM-COMET dataset Secondly, we observe CLM 

embeddings produce stronger performances in comparison to 

context-independent (W2V) embeddings especially with 

EBM-COMET. BioFLAIR and ClinicalBERT were the least 

performing models. For BioFLAIR, we hypothesize that, (1) 

pre-training on a relatively smaller corpus, (2) it being of 

much less depth (1-layered BiLSTM) compared to multi-

layered BERT and ELMo and (3) downsizing its embeddings 

using PCA dimensionality reduction are reasons that led to its 

low performance. For ClinicalBERT, we attributed its 

struggles to the nature of the corpora on which it is trained 

which include clinical notes associated with patient hospital 

admissions [49] rather than clinical trial abstracts which more 

often report outcomes. 

An additional insight we drew was, performance on the EBM-

NLPrev dataset is lower compared to that achieved on EBM-

COMET. This was attributed to the annotation inconsistencies 

in the original EBM-NLP, some of which were resolved in 

 
2 https://github.com/flairNLP/flair 

3 https://github.com/allenai/bilm-tf 

[10]. Another aspect we closely observed was the runtime. 

Using a TITAN RTX 24GB GPU, the average runtime for the 

fine-tuning experiments on EBM-COMET and EBM-NLPrev 

respectively was 7 and 12 hrs. On the other-hand, feature 

extraction (ODP-tagger) experiments were much longer 

consuming 20 and 36 hours respectively on the same datasets. 

Overall, we recommend fine-tuning as a preferred approach 

for outcome detection, more saw using BioBERT and 

SciBERT as ideal embedding models. 

3.6 Full outcome phrase detection 

Motivated by the need to detect accurate fine-grained infor- 

mation in the medical domain [50], we examine the extent to 

which our models detect precise mentions of full outcome 

phrases. To achieve this, we investigate how well the best per- 

forming models (Fine-tuned+BioBERT+EBM-COMET and 

Fine-tuned+BioBERT+EBM-NLPrev from Table 3) can de- 

tect full mentions of outcome phrases or otherwise exact 

matches of outcome phrases in prediction results. We use 

strict criteria to evaluate full mention of outcomes, where a 

classification error FN (False Negative) accounts for the num- 

ber of full outcome phrases the model fails to detect, which 

includes partially correctly detected phrases i.e. some of their 

tokens were misclassified. In Table 5, we observe the F1 of 

the best models drop from 53.1 to 52.4 for EBM-NLPrev and 

81.5 to 69.6 for EBM-COMET. This implies that the model 

struggles to identify full outcome phrases, especially with the 

EBM-NLPrev dataset. Specificity on the other hand is very 

high for both datasets simply because it is calculated as a True 

Negative Rate (TNR), in which case True Negatives (non- 

outcomes) are certainly so many because they are precisely 

individual words and therefore are counted word by word as 

opposed to True positives (actual outcome phrases) that can 

consist of multiple words. 

 P R S F 

EBM-NLPrev 53.7 51.2 99.2 52.4 

EBM-COMET 60.8 81.3 98.0 69.6 

Table 5: Precision (P), Recall/Sensitivity (R), Specificity (S) 

and F1 of outcome entities in EBM-NLPrev and EBM-

COMET. 

We further investigate the errors from the best performing 

mode BioBERT+EBM-COMET (Fine-tuned) and ODP-tagger 

+SciBERT+EBM-COMET. In Table 6, we show examples of 

outputs of both models for the ODP task given an input 

sentence with known actual outcome phrases (underlined). 

Fine-tuned model correctly detects (blue-coded) all full 

outcome phrase in the first example sentence i.e. Precision (P), 

Recall/Sensitivity (R) are 100%, whereas tagger only detects 

3/4 outcomes, hence P is 100%, R is 75%. Neither of the 

models correctly captures full mention of the outcome phrase 

in the second example; they incorrectly predict some words 

(red-coded) to not belong to the outcome phrase. While 

traditionally, results of fine-tuned model would be a P of 

100% and R of 50% for correct prediction of 2/4 tokens, in our 

strict full name evaluation, P and R, are 0%, because some  

https://github.com/MichealAbaho/ODP-tagger
https://github.com/flairNLP/flair
https://github.com/allenai/bilm-tf
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Method  Abstract sentence  Full outcome phrase  

 Input 

sentence 

 

Among patients who received sorafenib, the most frequently 

reported adverse events were grade 1 or 2 events of rash 

(73%), fatigue (67%), hypertension (55%) and diarrhea 

(51%). 

- adverse 

events 

- rash 

-fatigue 

-

hypertension 

-diarrhea 

BioBERT+ 

EBM-COMET 

Output Among patients who received sorafenib, the most frequently 

reported adverse events were grade 1 or 2 events of rash 

(73%), fatigue (67%), hypertension (55%) and diarrhea 

(51%). 

- adverse 

events 

- rash 

-fatigue 

-

hypertension 

-diarrhea 

ODP-tagger+ 

SciBERT+ 

EMB-COMET 

Output Among patients who received sorafenib, the most frequently 

reported adverse events were grade 1 or 2 events of rash 

(73%), fatigue (67%), hypertension (55%) and diarrhea 

(51%). 

- fatigue 

- diarrhea  -

hypertension 

 

 Input 

sentence 

The average duration of operating procedure was 1 hour and 

35 minutes. 

- duration of operating 

procedure 

BioBERT+ 

EBM-COMET 

Output The average duration of operating procedure was 1 hour and 

35 minutes. 

  

ODP- target+ 

SciBERT+ 

EMB-COMET 

Output The average duration of operating procedure was 1 hour and 

35 minutes. 

  

  The objective of this study was to evaluate right heart size and 

function assessed by echocardiography during long term 

treatment with riociguat. 

- right heart size 

- right heart function 

BioBERT+ 

EBM-COMET 

Output The objective of this study was to evaluate right heart size and 

function assessed by echocardiography during long term 

treatment with riociguat 

- right heart size 

 

ODP- target+ 

SciBERT+ 

EMB-COMET 

Output The objective of this study was to evaluate right heart size and 

function assessed by echocardiography during long term 

treatment with riociguat 

 

Table 6: Example outcome detection outputs from best fine-tuned BioBERT and ODP-tagger+SciBERT models. 

 

 P I O 

Logreg 45.0 25.0 38.0 

Lstm-crf 40.0 50.0 48.0 

Brockmeier et.al [24] 70.0 56.0 70.0 

Fine-tuned BioBERT 71.6 69.0 73.1 

Fine-tuned BioBERT – Full 61.6 64.0 73.1 

Table 7: F1 scores of token level detection of PIO elements 

reported for EBM-NLP hierarchical labels dataset by the EBM-

NLP [4] leader board. 

 

tokens in the full outcome phrase are misclassified in both 

models I.e. True positives = 0. Similarly, in the third example, 

fine-tuned model achieves P of 100% and R of 60% for correct 

prediction of 3/5 tokens in the traditional evaluation, whereas for 

the strict full name evaluation, R is 50% because only 1/2 full 

outcome phrases are detected. We attribute these errors to the 

length of some outcome phrases with some containing extremely 

common words such as prepositions (“of”). Additionally, we note 

that the contiguous outcome span annotations (containing several 

outcomes sharing terms e.g. “right heart size and function” in the 

third example) are rare.  

3.7 Evaluation on the original EBM-NLP 

We additionally fine-tune our best model for the task of detection 

of all PIO elements in the original EBM-NLP dataset. To be 

consistent with the original EBM-NLP paper, we consider the 

token-level detection of the PIO elements task in their work, 

comparing their evaluation results for hierarchical labels with 

those we obtain by fine-tuning our best model. Using their 

published training (4670) and test (190) sets of the starting spans, 

we see fine-tuned BioBERT model outperform the current leader 
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board results44 and the SOTA results published by Brockmeier et 

al [24] (Table 6). We attribute this improvement to the fact, 

unlike the LSTM-CRF and Logreg models in previous SOTA 

scores, BioBERT’s has an internal capability to encode 

information using self-attention mechanisms to generate context-

sensitive representations of words. 

3.8 Outcome phrase length 

To further understand our results, we investigated how well the 

best models BioBERT+EBM-COMET (Fine-tuned) and ODP-

tagger+SciBERT+EBM-COMET (Feature-extraction) detected 

outcome phrases of varying lengths (Figure 3). We calculate 

prediction accuracy as number of correctly predicted outcome-

phrases of length x/number of all outcome-phrases of length x, 

where x ranged from 1-10. As observed in 3, the fine-tuned 

model slightly outperforms the ODP-tagger especially for 

outcome phrases having 3-6 words (i.e. 3-6 entity span length). 

However, it is also clear that both models struggled to accurately 

detect outcome phrases containing 7 or more words.  

 

Figure 3: Prediction accuracy per entity text-span length. 

4. Conclusion 

In this work, we present EBM-COMET, a dataset of clinical trial 

abstracts with outcome annotations to facilitate EBM tasks. 

Experiments showed that CLMs perform much better on EBM-

COMET than they do on EBM-NLP, indicating it is suited for 

ODP task especially because it is well aligned to standardised 

outcome classifications. Our assessment showed fine-tuned 

models consistently outperform and converge faster than feature 

extraction, particularly pre-trained BioBERT and SciBERT 

embedding models. Additionally, we show the significance of 

accurate detection of full mention of granular outcome phrases 

which is beneficial for clinicians searching for this information. 
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Appendix  

(A)  Adapting CLMs to Outcome Detection Task 

1. Fine-tuning  

The biomedical CLMs presented under section 3.2 are fine tuned 

for the Outcome Detection (ODP) task. Given an input sentence 

containing n words/tokens, e.g. 𝑠 =  𝑤1, . . . , 𝑤𝑛 the CLMS are 

used to encode each a word wi to obtain a hidden state 

representation ℎ𝑖  =  CLM(𝑤𝑖), where 1 ≤  𝑖 ≤  𝑛, {BERT-

variants, BioELMo, Bio FLAIR} ∈  CLM and ℎ𝑖 ∈ ℝ𝑛×𝑑 (i.e. hi 

is a vector of size 𝑑). We then apply softmax function to return a 

probability of each label for each position in the sentence s, 𝑦 =
softmax(𝐖ℎ + 𝑏), where 𝐖 ∈ ℝ|ℒ|×𝑘i.e. 𝐖 is a matrix with 

dimensions |ℒ| (size of label set)  × 𝑘 (hidden-state size). ℒ 

represents the set of outcome type target labels. Given the 

probability distribution the softmax generates at each position, 

we use argmax𝑃(𝑦|𝑤𝑛; θ) to return the predicted outcome type 

label. 

2. Building an outcome detection model (ODP-tagger) 

In this work, we augment a BiLSTM model with in-domain 

resources including medically oriented part-of-speech tags (POS) 

and PubMed word2vec vectors [29]. We then train the model on 

EBM-NLPrev incorporating a class distribution balancing factor 

which essentially aims to regularize the multi way softmax loss 

with a balanced weighting across multiple classes. The conscious 

effort of augmenting a regular BiLSTM was indeed re-

enumerated with a visible gradual improvement in dev set F1 

scores for the ODP task as Table 10 presents. Below sections 

cover the augmentation steps. 

2.1 Custom trained biomedical POS  

We compare the performance of 3 Part-Of-Speech (POS) 

taggers, which include, 2 popular generic and fully established 

Natural Language Processing (NLP) libraries, spaCy5 [1], 

Stanford Core NLP6 [51], and a tagger specifically tuned for 

POS tagging tasks on biomedical text (Genia-Tagger) [52]. The 

Genia-Tagger is pre-trained on a collection of articles extracted 

from the MEDLINE database [53]. To avoid any biased analysis 

in the comparative study, spaCy and Stanford Core NLP are also 

customized for biomedical text by training them on a corpus of 

6,700 Medline sentences (MedPOST) annotated with 60 POS 

tags [54]. These 3 taggers are each used to provide POS features 

to input samples (words) for a task to classify outcome phrases 

into five outcome types that include Physical, Pain, Mental, 

Mortality, Adverse effects and Other as predefined in EBM-

NLPrev dataset. A BiLSTM network and a softmax classification 

layer are used to complete this task. The model using trained 

Stanford tagger outperforms the other two models (table 8), and 

as a result, we use Stan- ford Core NLP for POS tagging in the 

proceeding ODP task 

 EBM-NLPrev (F1%) 

BiLSTM-spaCY-MedPOST 80.5 

BiLSTM-Stanford-MedPOST 81.3 

BiLSTM-Genia-Tagger 79.0 

Table 8: Macro-average F1 scores in a text classification task of 

Outcomes in EBM-NLPrev corpus. Biomedical POS taggers 

including spaCY-MedPOST, Stanford-MedPOST and Genia-

Tagger are used to provide POS features which are trained 

alongside the text in a BiLMST model. 

2.2 Context-Independent PubMed word2vec vectors (W2V) 

We train word2vec (W2V) on 5.5B tokens of PubMed and PMC 

abstracts to obtain these vectors. These fixed vectors are later 

replaced by the pre-trained CLMs in the feature extraction 

approach during evaluation.  

2.3 Probing for a loss function for the ODP-tagger  

We assess 3 cost-sensitive functions premised on a log likelihood 

objective log 𝑝(𝑦|𝑤), (log probability of label y given input 

word w) to identify a suitable learning loss for the ODP-tagger 

experiments. 

 ODPloss = − ∑ ∑ 𝑝(𝑦𝑖|𝑤𝑖)

𝑛

𝑖(𝑆,𝐿)∈𝑇

 (4) 

Where 𝑇 is the training set containing sentences, 𝑤𝑖 ∈ 𝑆 and 𝑦 ∈
𝐿. 

2.4 Imputed Inverse loss (IIL) function. 

Empirically setting each label’s weights to be inversely 

proportional to the label frequency a relatively simple heuristic 

that has been widely adopted [55]. 

 IIL = 𝛽 ⋅ ODPloss (5) 

 

We check two variants of the scaling factor β in the Imputed 

Inverse Loss equation IIL1, 𝛽 =  
1

𝑁𝑦
 and a smoothed version IIL2, 

𝛽 =  
1

√𝑁𝑦
  , where 𝑁𝑦 is the number of training samples labelled 𝑦 

or frequency of ground truth label 𝑦. 
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2.5 Class balanced loss (CB) 

 The Class balanced loss proposed by Cui et al., [56] discusses 

the concept of effective number of samples to capture the 

diminishing marginal benefits of incrementing the samples of a 

class. Due to the intrinsic similarities among real-world data, 

increasing the sample size of a class might not necessarily 

improve model-performance. Cui et al., [56] introduces a 

weighting factor that is inversely proportional to the effective 

number samples 𝐸𝑛. 

Where 𝐸𝑛 =
1−𝛽

1−𝛽
𝑛𝑦 , 𝛽 =  

𝑁−1

𝑁
 , 𝑁 is dataset size and 𝑛𝑦  is the 

sample size of label 𝑦, 𝛽𝑛𝑦  =  
𝑛𝑦−1

𝑛𝑦
 

 CL =
1

𝐸𝑛

ODPloss (6) 

 

2.6 Focal loss (FL)  

Focal loss assigns higher weights to harder examples and lowers 

ones to the easier examples [57]. It introduces a scaling factor (1 

− p) λ. λ is a focusing parameter in the loss function which decays 

to zero as the confidence in the correct class increases hence 

automatically down weighting the contribution of easy examples 

in the training and rapidly focusing on harder examples. 

 FL =  −𝛼𝑦(1 − 𝑃𝑦)
λ

ODPloss (7) 

 

Where α is a weighting factor, 𝛼 ∈ [0, 1], 𝛼𝑦 is set to 
1

Ny
 , 𝑁𝑦 is 

the number of training samples for class 𝑦, 𝑃𝑦 is the probability 

of ground truth label y. We do not hyper tune the focusing 

parameter ⋋, and instead set it to ⋋= 2 based on having achieved 

good results in examples [57].  

Results in Table 9 indicate both IIL variants and CB are quite 

competitive, however we chose IIL2 particularly because it 

slightly outperforms all the other tested for the objective loss 

function. 

 EBM-NLPrev 

BiLSTM* 27.0 

BiLSTM + IIL1 37.0 

BiLSTM + IIL2 38.0 

BiLSTM+ CB 37.0 

BiLSTM + FL 19.0 

Table 9: F1 % scores in the ODP task for various cost-sensitive 

functions on EBM-NLPrev corpus. BiLSTM* implies the models 

was training with the default loss as shown in equation 4. 

2.7 Introducing an under sampling hyper-parameter (US)  

In this strategy, we randomly under sample the majority class of 

the dataset by a specified percentage. The objective of the ODP-

tagger is to minimize the Imputed Inverse loss (IIL) derived from 

the negative log likelihood loss when predicting labels, 

 

 IIL2 = −
1

√𝑁𝑦

∑ ∑ 𝑝(𝑦𝑖|𝑤𝑖)

𝑛

𝑖(𝑆,𝐿)∈𝑇

 (8) 

 

Table 10 results are emblematic of the positive impact each of 

the different strategies had in architecting the ODP-tagger. We 

observe slight performance improvements upon adopting US50 (a 

strategy in which the majority class is under sampled by 50% 

during training) and replacement of the softmax with a CRF for 

classification. We observe cumulative performance of 5.4%, 

3.2% and 2.1% upon adding POS𝑠𝑡 asd W2V𝑃𝑏  and IIL2 

respectively. On the other hand, adopting US50 and replacement of 

the softmax with a CRF for classification lead to slight 

improvements of 0.4% each. 

We are aware that the improvements narrated above can 

dramatically change given new splits of the data, particularly the 

slight improvements brought about by US50 and the CRF. 

Therefore, to account for this, we check for the robustness of the 

improvements brought about by US50 and the CRF by measuring 

performance across 5 different randomly split train and test sets. 

The mean and (standard deviation) across the 5 experiments of 

the random splits are reported in Exps 7, 8 and 9. Results 

obtained in 8 and 9 show that both US50 and the CRF respectively 

lead to substantial improvements in performance when added to 

the ODP-tagger. Later on, we hyper- tune multiple parameters to 

obtain the optimal parameter set- tings (Table 11) for fine-tuning 

and feature extraction experiments. 

 Model F1 % 
1 BiLSTM* 32.5 

2 BiLSTM* + POS𝑠𝑡 37.9 

3 BiLSTM* + POS𝑠𝑡 + W2V𝑃𝑏  41.1 

4 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2 43.2 

5 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2+ US50 43.6 

6 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2+ US50 + CRF 44.0 

7 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2 42.8 (1.5) 

8 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2+ US50 43.2 (1.9) 

9 BiLSTM + POS𝑠𝑡 + W2V𝑃𝑏  + IIL2+ US50 + CRF 44.3 (1.4) 

Table 10: F1 % scores in the ODP task resulting from 
incrementally augmenting the BiLSTM with various components 
to build the ODP-tagger. BiLSTM∗ implies the model was 
training with default ODPloss objective as shown in (4),  POS𝑠𝑡 
denotes POS tagging by Stanford CoreNLP tagger, W2V𝑃𝑏  
denotes Word2Vec trained using PubMed articles (Only non-
contextual embeddings are tested in this investigation because 
they have smaller dimensions), IIL2 denotes Imputed Inverse 
loss, US50 denotes Undersampling majority class by 50%. Exps 1-
5 use a softmax classifier which is replaced by a CRF in 5. Exps 
7-9 report the mean and (standard deviation) over 5 random 
train/test splits 
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(B) Hyper-parameter Tuning  

The tuned ranges for the hyper-parameters used in our models 

are included in Table 11.  

Fine-tuning 

 Tuned range Optimal 

Learning rate [1e-5,1e-4, 1e-3, 1e-2] 1e-5 
Train Batch size [16,32] 32 
Epochs [3, 5, 10] 10 
Sampling % 
(US) 

[50, 75, 100] 100 

Optimizer [Adam, SGD] Adam 

ODP-tagger 

Learning rate [1e-4, 1e-3, 1e-2, 1e-1 1e-1 

Train Batch size [50, 150, 250, 300] 300 
Epochs [60, 80, 120, 150] 60 
Sampling % 
(US) 

[10, 25, 50, 75] 50 

Optimizer [Adam, SGD] SGD 

Table 11: Hyper-parameter tuning details 
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(C) A classification taxonomy of outcome domains suitable for retrieval of outcome phrases from clinical 

text 

Core area  Outcome domain Domain 

symbol 

Explanation 

Physiological Physiological/Clinical P 0 Includes measures of physiological function, signs and 

symptoms, laboratory (and other scientific) measures 

relating to physiology. 

Death  Mortality/survival P 1 Includes overall (all-cause) survival/mortality and cause-

specific survival/mortality, as well as composite survival 

outcomes that include death (e.g. disease-free survival, 

progression-free survival, amputation-free survival). 

Life impact Physical functioning P 25 Impact of disease/condition on physical activities of daily 

living (for example, ability to walk, independence, self-

care, performance status, disability index, motor skills, 

sexual dysfunction. health behaviour and management). 

Social functioning P 26 Impact of disease/condition on social functioning (e.g. 

ability to socialise, behaviour within society, 

communication, companionship, psychosocial 

development, aggression, recidivism, participation) 

 

Role functioning P 27 

 

Impact of disease/condition on role (e.g. ability to care for 

children, work status). 

  

Emotional 

functioning/wellbeing 

P 28 Impact of disease/condition on emotions or overall 

wellbeing (e.g. ability to cope, worry, frustration, 

confidence, perceptions regarding body image and 

appearance, psychological status, stigma, life satisfaction, 

meaning and purpose, positive affect, self-esteem, self-

perception and self-efficacy). 

Cognitive functioning P 29 Impact of disease/condition on cognitive function (e.g. 

memory lapse, lack of concentration, attention); outcomes 

relating to knowledge, attitudes and beliefs (e.g. learning 

and applying knowledge, spiritual beliefs, health 

beliefs/knowledge). 

Global quality of life P 30 Includes only implicit composite outcomes measuring 

global quality of life 

Perceived health status P 31 Subjective ratings by the affected individual of their 

relative level of health. Includes outcomes relating to the 

delivery of care, including - adherence/compliance, 

withdrawal from intervention e.g. time to treatment 

failure). - Tolerability/acceptability of intervention. - 

Appropriateness, accessibility, quality and adequacy of 

intervention. - Patient preference, patient/career 

satisfaction (emotional rather than financial burden). - 

Process, implementation and service outcomes (e.g. 

overall health system performance and the impact of 

service provision on the users of services). 
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 Personal circumstances P 33 

 

Includes outcomes relating to patient’s finances, home and 

environment. 

Resource use Economic P 34 Includes general outcomes (e.g. cost, resource use) not 

captured within other specific resource use domains 

Hospital P 35 Includes outcomes relating to inpatient or day care 

hospital care (e.g. duration of hospital stays, admission to 

ICU). 

Need for further 

intervention 

P 36 

 

Includes outcomes relating to, - medication (e.g. 

concomitant medications, pain relief) - surgery (e.g. 

caesarean delivery, time to transplantation) - other 

procedures (e.g. dialysis-free survival, mode of delivery) 

Societal/carer burden P 37 Includes outcomes relating to financial or time 

implications on career or society as a whole e.g. need for 

home help, entry to institutional care, effect on family 

income 

Adverse 

events 

Adverse events/effects P 38 Includes outcomes broadly labeled as some form of 

unintended consequence of the intervention e.g. adverse 

events/effects, adverse reactions, safety, harm, negative 

effects, toxicity, complications, sequelae. Specifically 

named adverse events should be classified within the 

appropriate taxonomy domain above 

Table 11: Taxonomy of outcome classifications developed and used by [2] to classify clinical outcomes extracted from biomedical 

articles published in repositories that include Core Outcome Measures in Effectiveness Trials (COMET), Cochrane reviews and 

clinical trial registry 




