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Summary

The assessment of the fetal size based on
ultrasound biometry is important for proper
pregnancy management. The means for
evaluations of these measurements
represent age-related reference intervals
and centile charts which are used to detect
the extreme values, possibly indicating
pathology. The key features concerning
the design of studies used for the
construction of these intervals are given.
The aim of this paper is to review possible
statistical approaches, pointing out the
methodology, goodness of fit, advantages
and limitations.
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1. Introduction

The assessment of fetal size is of a crucial
importance for the proper pregnancy
management. It is implicitly based on
ultrasound measurements of embryonic
and fetal biometrical parameters (e.g.
crown-rump length, head circumference,
femur length, etc.), most of which almost
invariably increase with the gestational
age (GA) [1]. The means for evaluation of
these measurements are age-related
reference intervals (RIs) and centile
charts, allowing interpretation of obtained
fetal body measurement in comparison
with the body size of fetuses in the
reference population [2].

The RI (often misleadingly called 'normal
range') represents the interval between
a pair of predetermined extreme centiles
(commonly the 5" and 95" for a 90%
interval) of a size variable, denoted y, at a
given GA (denoted t). Centile charts plot
the value of y corresponding to one or more
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centiles against relevant GA over a range
of GAs.

In the field of fetal size, measured values of
y which lie outside the Rl are regarded as
extreme and may indicate the presence of
underlying pathology (e.g. morphological
or chromosomal abnormality [3],
intrauterine growth restriction [4],
macrosomia [5]). Otherwise, more
informatively, the value's exact centile
position relative to the reference
population is estimated from the
knowledge of the distribution of y at a given
GA. The proximity of the centile position to
0% or 100% is a measure of how extreme
the observation is compared to the
reference population [6].

Variety of strategies for constructing of Rls
and centile charts has been published. The
choice of appropriate methodology in the
field of fetal biometry is especially crucial
as inaccurate centiles may lead to
incorrect conclusions regarding fetal
development. The aim of this article is to
scrutinize possible statistical methods for
age-related Rls and centile charts for fetal
size.

2. Study design
Prior to statistical methods we consider the
key features of the study design.

Size and growth. It is important to bear in
mind the difference between two notions,
which are commonly confused: size and
growth. The fetal size represents a single
measurement point, while fetal growth
refers to a dynamic process [7], [8]. These
two concepts contain completely diverse
information. The fetal size can be normal
despite abnormal growth, whereas normal
fetal growth can be associated with an
abnormal size. It is necessary to retain the
clear distinction between the size and

growth and to realize that the appropriate
study design for these outcomes is
different.

Cross-sectional and longitudinal
studies. The same as above applies for
the difference between cross-sectional
and longitudinal studies [1], [4]. In the
former, each fetus contributes just once to
a reference sample, whereas in the latter
each fetus is measured several times.
Therefore, cross-sectional data give
information only on the size and can be
used to compare the size of a fetus (of
known GA) on a single occasion with
reference data.

Longitudinal data may be used to produce
RIs for the fetal size as well as growth. The
analysis of longitudinal data requires a
different approach. Serial measurements
on an individual fetus are highly correlated
so that the effective sample size in such an
approach is likely to be nearer to the
number of fetuses than to the total number
of observations [1]. Thus, statistical
methodology must be accordingly
adjusted.  Further information can be
found in the literature [9], [10]. The
following review will deal with the
constructing Rls for the fetal size based on
the cross-sectional data, as they are more
common in the field of fetal biometry,
maybe because of easier data collection
compared to longitudinal studies.

Sample selection and data collection.
The choice of an appropriate sample is of a
great importance. It is preferable to collect
data specifically for the purpose of
developing RIs, with each fetus being
included only once [1]. The aim is to obtain
as unselected and representative group as
possible with no prior selection for
examination as data collected at a scan
done for any clinical indication may
seriously bias the results.
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Typically, the status of pregnancy is
determined retrospectively, and there is
scope for controversy in deciding which
pregnancy should be regarded as
abnormal and excluded from the reference
sample. Altman and Chitty [1] recommend
using for the exclusion only information
available at the time of the ultrasound
measurement, with the exceptions of
subsequently found serious congenital
anomaly or condition affecting fetal growth,
such as maternal diabetes or renal
disease. There is desirable to have
approximately equal numbers of
measurements at each week of gestation

1]

Sample size. It is hard to specify the
appropriate sample size for developing
centile charts. The larger the sample size
the greater precision centiles will have. The
interestis usually focused on the tails of the
distribution. Royston [11] published that
the standard error (SE) of the 100ath
centile (c,,,,) Can be approximately
expressed as a multiple of the age-specific
standard deviation (SD) as

[

I(1+ ! z?

I\ 27 1a),
SE (€100 = SDV D (1a)

where z,_, is the appropriate value from
the standard normal distribution and n is
the number of cases [11]. Therefore for the
sample size nwe obtain

1+—z .

e (1b).
SE(Ci00) |
(5]

If, for example, we require SE for a 90%
reference interval to be 5% of SD, the
resulting value of n would be n~ (1+0,5.
1,6452)/0,052 ~ 941, for SE corresponding
to 10% of SD n =~ 235. Besides, more
extreme centiles are less precisely
estimated. It is clear that basically several
hundred observations are necessary to get
reasonable estimates of extreme centiles.

3. Statistical methods

The number of possible statistical methods
for the calculation of Rls and centile charts
has mushroomed in the last two decades.
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The basic requirements for the method are
to produce centiles which change
smoothly with GA and provide good fit to
the data [1]. The requirement stated in the
nineties, to maintain as simple as possible
[1], is becoming less important due to the
broad availability of a computer
technology. Finally, it is desirable that
model allows the calculation of the relevant
centile position and Z-score for any further
measurement [12]. Z-scores have been
used increasingly in recent years, and are
the WHO-recommended system for
comparing individual anthropometric
measurement with the reference
population [13]. They have also proved to
be a powerful quality-control tool, allowing
the sonographers to choose appropriate
reference charts [14] and to audit their daily
practice [15].

Generally, methods are divided into two
broad categories: parametric (based on
modelling the distribution) and non-
parametric (empirical).

3.1 Mean and SD model

In this most common parametric method,
the basic assumption is that at each GA the
measurement of interest has a normal
distribution with a mean and SD that vary
smoothly with GA. A desired centile curve
is then calculated using formula

Clooe = L +k-SD (2),

where k is the corresponding centile of the
normal distribution (e.g. for 10" and 90"
centile k is +1.28, for 5" and 95" centile k
is + 1.645, etc.) and py and SD are,
respectively, the mean and standard
deviation at the required GA for the
reference population. The approach is
based upon least-squares regression
analysis to model both the mean and the
SD curves as polynomial functions of GA
(11, (4], [11], [16].

First, the regression analysis is applied to
the raw data to find a suitable curve for the
mean (Figure 1). As for the choosing the
degree of polynomial, Royston [11] and
Royston and Wright [4] recommend the
initial use of a cubic polynomial (a + b.t +
c.t + df). If the coefficient d is not
significantly different from zero (d divided
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by its SE and the result referred to the
appropriate point of the Student
tdistribution with n -4 degrees of freedom),
a quadratic polynomial is then fitted and
the same assessment applied for ¢
coefficient. The process is repeated until
no further removal of terms is possible.
Altman and Chitty [7] suggest the linear-
cubic model (a + b.t + c.f) as a good
alternative for fetal size data. Fitting
polynomial of a higher degree than cubic is
not advocated as the fitted curve may
exhibit unrealistic features such as
waviness or sharp deviation at extreme
ages [4]. In case coefficients for quartic or
quintic polynomials are statistically
significant, the use of fractional
polynomials is recommended (see section
3.1.2) [17]. The choice of curve should be
based not only on statistical significance,
but also the aesthetical appearance and
the quality of fit to the data should be taken
into account.

Next step is to check the goodness of fit of
the obtained polynomial by plotting the
residuals (observed minus predicted
values) against GA to assess if and how
variability changes with age [7]. The
normal quantile-quantile (Q-Q) plot of
residuals can reveal any departure from
normality (e.g. positive or negative
skewness). In this case transformation of
the data towards normality should be tried
prior to the analysis. See section 3.1.1.

After the suitable mean model is
established, the attention is turned to the
modelling of the variability. Many
previously published studies fit the model
which does not allow the SD to change with
gestation. However, in the field of fetal
measurements the between-subject
variability almost always shows an upward
trend during pregnancy [7], so itis crucially
important to consider the relation between
the SD and age. The approach of Altman
[16] is one of the most frequently used.
Based on the assumption that variable of
interest has a normal distribution at all
ages, the residuals from the mean model
should be then also normally distributed.
Subsequently, the absolute values of
residuals should have a half normal
distribution.

© 2010 EuroMISE s.r.o.
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Fig. 1. Plot illustrating the relationship between fetal crown-rump length and gestational age during first trimester of pregnancy,
showing the raw data and the fitted curve for the mean (—) with the quadratic polynomial y = 0.0126 £ - 0.3177 t - 6.7365. The
sample consists of 664 fetuses with exactly known gestational age (in-vitro fertilization pregnancies).
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Fig. 2. Plot of scaled absolute residuals from the regression line shown in Figure 1 together with fitted linear regression line
y=0.0833t-2.6173.
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If we have a variable X which follows
a normal distribution with mean zero and
variance 2, the absolute value |X| follows
a half-normal distribution which has mean
\(2/n)o [18]. The mean of the absolute
residuals multiplied by (n/2) is an
estimate of the SD of the residuals. Thus if
the SD is not reasonably constant over
age, the predicted values from regression
of the absolute residuals on age multiplied
by (n/2) will give age-specific estimates
ofthe SD of the residuals, and hence of y.

An identical approach published by
Royston and Wright [4] comprises to
produce 'scaled absolute residuals'
(SARs) by multiplying the absolute
residuals by V(r/2). Subsequently, SARs
are regressed on age in the same way as
for the mean and again the predicted
values from this curve estimate the SD of
the residuals (Figure 2). Itis unlikely that a

has been modelled, as presumably 90% of
the observed residuals should fall within
these limits.

If absolute residuals show no trend with
age, the SD is estimated as the SD of
unscaled original residuals.

The regression analysis to estimate the
mean ought strictly to take into account any
change in SD with gestation. Thus the
mean model could be subsequently
refitted using the reciprocal of the square of
the estimated age-specific SD as weights
[19]. However, the effect of this refitting is
almost always rather small [7].

The next very important step includes the
evaluation of goodness of fit. A useful tool
includes Z-scores which we calculate for
the observed values y using formula
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where GAand SDGA are, respectively, the
mean and SD given by the model for the
GA at which the observation y is made.
Then several modalities are advocated [7]:
a plot of Z-scores against age to confirm
that no untoward pattern is present and to
check that the expected proportions of
values fall between or outside the
appropriate centiles (for example 90% of
Z-scores should lie betweenZ = 1.645,5%
above and 5% below) (Figure 3). Further
normal Q-Q plot of Z-scores can be used to
check if they have close to normal
distribution (Figure 4). This is signified by
roughly straight line and can be formally
confirmed using Shapiro-Wilk W [20] or
Shapiro-Francia W' test [21]. However, in
large samples slight deviation from
normality may lead to statistically
significant non-normality, so it is unwise to
worry about moderately small p (such as
p = 0.01) unless the normal plot shows
clear deviation from a straightline [7].

curve more complex than quadratic is R 2
needed for a satisfactory fit for the SD [16]. Z skor = (3),
Superimposing 1.645 SD on the residual GS
plotis helpful in assessing how well the SD
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Fig. 3. Plot of Z-scores of observations with the expected 5" and 95" centiles 6.0% of observations fall below 5" centile, 5.3%
above 95" centile and 88.7% between 5" and 95" centiles.
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Fig. 4. Normal quantile-quantile plot of Z-scores of observations. Shapiro-Wilk W test = 0.997 (p = 0.31).

Eventually, a satisfactory model being
determined, the centile curves for the
desired RIs may be calculated by
substituting the expression for the fitted
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Crown-rump length (mm)

20

mean and SD into equation (2) and
superimposed on a scatter diagram of
observations as a final check to fit (Figure
5). The Z-score for any new measurement

60 70 80
Gestational age (days)

can be calculated using equation (3) and
its centile obtained from the inverse normal
distribution function.

Fig. 5. Final model of fetal crown-rump length in relation to gestational age, showing raw data together with reference curves for
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the mean (—), 5" and 95" centiles (~--—-).
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3.1.1 Logarithmic transformation

The method just mentioned requires the
assumption that at each GA the data come
from a population with normal distribution.
However, this is not always the case, as
many fetal measurements often present
skewness in the distribution (mostly
positive, with the right tail of the distribution
longer than the left). The logarithmic
transformation can help to overcome the
issue. The solution at the same time
stabilizes the variance in case the SD
increases rapidly with age [11].

Royston [11] suggests if residuals from the
initial model show a positive skew to
perform a logarithmic transformation on
the original value y and refit the model on
log (y). If residuals from refitted model are
once again skewed, then it is
recommended to try a shifted logarithmic
transformation of the form log (y + C), with
C>0 for residuals negatively skewed and
C<0 for positively skewed. The best value
of Cis that which maximizes p-value for the
normality test of the residuals.

Once the modelis finalized itis important to
back-transform the curves using antilog
(and to subtract C, respectively).

3.1.2 Fractional polynomials
Conventional polynomials suffer from
several well-known disadvantages. Low
order polynomials offer only a few curve
shapes and thus do not always fit the data
well, whereas high order ones may fit badly
at the extremes of the observed range.
Further, they do not have asymptotes and
cannot fit data where limiting behaviour is
expected [22]. Royston and Altman [17]
proposed an extended family of curves,
called fractional polynomials (FPs), whose
power terms are restricted to a small
predefined set of integer and non-integer
values. Conventional polynomials are
a subset of this family. If conventional
polynomialis of aform

a+bt +ct+df+.. (4),
FPs are defined as
a+bf +ct+d o+ ... (5),
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where p,, p,, ... are chosen from the set
{-2,-1,-0.5,0,0.5,1, 2, 3}. Conventionally,
the power O represents natural logarithmic
transformation, so that £ equals to log,(f).
Another extension involves 'repeated
powers'. In this case the second term is
multiplied by log,(f). For example, an FP of
degree 3 with powers (0, 2, 2) is then of
aform

a+b.log,(f) +c.t+d.f.log,(f) (6).

An FP of first degree is of the form a + b.f".
For a given data set, the best value of p is
found by fitting eight separate linear
regressions using %, ', ..., £ and selecting
the value of p which gives the best fit.
Regarding FPs of the second degree (a +
b.f" + ¢.f?), using the standard set detailed
above would involve fitting a model for
each of 36 permissible combinations of
powers. The model with the lowest residual
SDischosen as the best.

The use of FPs can often give a better fit
even with fewer terms compared to
conventional polynomials.

3.2LMS method

The LMS method, introduced by Cole [23],
[24] and further refined by Cole and Green
[25], is an extremely flexible and widely
applicable semi-parametric method which
can produce smooth centile curves even
when the data appear to have
a complex shape. Furthermore, time-
varying skewness, which cannot be taken
into account with classical logarithmic
transformation, is easily dealt with. The
method assumes that the use of suitable
power transformation can remove
skewness and normalize the data. Such a
family of transformations is that proposed
by Box and Cox [26], with the optimal
power A at a given age calculated from the
datato completely remove the skewness.

The distribution of the variable of interest y
changes smoothly with age and is
completely summarized by three
parameters A (Box-Cox power, related to
skewness), u (median) and o (coefficient
of variation), the initials of which (L, M and
S) give the name to the method.
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Suppose that y has median p and that y'(or
log,(y)if A = 0) is normally distributed. Then
we consider transformed variable x

based on the Box-Cox transformation [26].
This transformation maps the median of y
tox=0andis continuous atA.=0. ForA =1
the SD of x is exactly the coefficient of
variation (CV) of y, and this remains
approximately true for all close to one [25].
The optimal value of A is that minimizes the
SDof x.

Denoting the SD of x (and the CV of y) by &,
the Z-score of x (and hence y) is given by

o (8)

and is assumed to take a standard normal
distribution. Assume that the distribution of
y varies with { (GA), and that A, u and ¢ at
t are read off the smooth curve L(f), M(f)
and S(t). Then

[ y Jl 0 71

M(t)

. 7{40)50) pro L(#) =0
- N

1 M}’ J
_\M@®) pro L(z)=0
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Rearranging (9) shows that centile ¢, of y
attisgivenby

Clooe (£) = J,M (I)BT{-’({)SU)ZQ ]L(u
M(n)e’"™

pro L(¢£) =0
pro L(#)=0 (10),

where z, is the normal equivalent deviate

of size a.. This shows thatif L, M and S
curves are smooth, then so are the centile
curves. The equation (10) allows us to
calculate and draw any desired centile
curve and the equation (9) allows
converting any individual measurement
into Z-score.

The original method [23], [24] involved
splitting the data into age groups, as
narrow as possible, but at the same time
with adequate numbers of measurements
(at least 100 for the best result), then
estimating L, Mand S for each group using
maximum likelihood and finally
constructinga smooth curve by the means
of cubic splines, kernel methods,
polynomials or simply drawing by eye. The
choice of age cut-offs between groups is
arbitrary and thus could influence the final
result.

Cole and Green [25] added a non-
parametric aspect to the original LMS
method by using penalized likelihood
function. The curves L(t), M(t) and S(t) are
estimated by maximizing the penalized
likelihood

) 1 " 2

E—Ea?\I{L (1) Fdr—
1 " 2

—E%J{M (6)f de -

1 s
—Eacj{ () Fd (1),

where o,, o, and o, are smoothing
parameters and log-likelihood function £ is
givenby
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=3 L(1,)log—~ —logS(Jl.)—lzf
M(t) 2",

=l

i

(12).

Three integrals provide roughness penal-
ties for the curves L(f), M(f) and S(f),
leading to natural cubic splines with knots
ateach distinct value of t. The advantage of
this approach is that the subjective
grouping step is removed, the entire
dataset s treated as a single entity and the
curve fitting across the age is controlled
directly by smoothing parameters. No age
cut-offs need to be specified, and L, M and
S values at each age are used in turn to
calculate the other two parameters. The
only arbitrariness is the choice of a,,, o,
and o, orin practice equivalent degrees of
freedom (EDF), calculated for each fitted
curve as a function of these smoothing
parameters, which give a more usable
measure of the extent of the smoothing.
The EDF of each L, M and S curves is a
measure of complexity (e.g. EDF = 1
means a constant, EDF = 2 corresponds to
the straight line, EDF = 3 almost a
quadratic curve, and EDF > 4 indicates
progressively more complex curve
shapes). The choice must strike balance
between the fidelity to the data and the
smoothness. Low values of EDF may lead
to the oversmoothed curves whereas high
values to the undersmoothed ones. The
disadvantage is that the choosing of EDFs
is somewhat subjective. However, as a
very rough guideline, we may use a
procedure for assessing goodness of fit by
comparing the difference in deviance
(-2log(penalized likelihood)) between two
models where the total number of EDFs
differed by e to a y : -distribution [6]. The
other procedure, which helps in finding
proper smoothing values for EDFs,
represents a worm plot, a very sensitive
diagnostic tool proposed by Buuren and
Frederiks [27]. The worm plot consists of a
collection of detrended Q-Q plots of
residuals (detrended means that each
empirical quantile is subtracted from its
corresponding unit normal quantile

|

[28]), which are split according to age.
Amodel that fits data well is characterized
by a flat worm-like string. A particular
change in shape and location of worm
corresponds to the type of misfit (e.g. in
mean, variance, skewness, kurtosis).

3.3LMSP method

The assumption of normality following the
Box-Cox transformation may be violated
by the presence of kurtosis, for which the
transformation does notadjust.

The LMSP method of Rigby and
Stasinopoulos [29] can be understood as a
generalization of the LMS approach. It
uses a Box-Cox power exponential
distribution to try to overcome the issue of
kurtosis. The distribution has four
parameters denotedas u, ¢, v and t and
, Which may be interpreted as relating to
location (median), scale (approximately
CV), skewness (transformation to
symmetry) and kurtosis- (power
exponential parameter), respec-
tively. The advantage is that this
distribution provides a flexible model for
both skewness and kurtosis (allowing
either for platykurtosis or leptokurtosis).

The model is fitted by maximizing
a penalized likelihood. Centile estimation
proceeds in a manner not dissimilar to that
ofthe LMS method.

3.4HRY method

Healy, Rabash and Young [30] (hence
HRY) proposed a non-parametrical
procedure based on the technique of
Cleveland [31] for a smoothing a scatter
plot by using locally weighted regression.
This approach makes no assumption
about the nature of the distribution of
measurements at a given age and centiles
are estimated empirically. At the same time
itis expected that both centiles themselves
and the intervals between centile at a fixed
age should behave smoothly. This is done
by constrain that the spacings between
centiles can be expressed as a low-order
polynomialin the underlying Z-score.
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The first stage involves obtaining the
selected raw centiles. The data are sorted
into ascending age order. The first
k measurements are then selected, where
kis a fraction of the total number available,
typically 5-10%. A regression of these
k measurements on age is fitted, the
desired centiles are obtained from the
ranked residuals, using interpolation when
necessary and their values are plotted
against the median age value of k points.
This procedure has used points 1 to k. Itis
repeated successively using points 2 to
k+1,3to0k+ 3, ... until the whole span of
ages has been covered.

The initial centile curves will be very
irregular, so the second stage is needed to
smooth them. A smooth curve for the ith
centile can be estimated by the polynomial
of degreep

y=a,tat +af+..+al (13).

The coefficients a, for a fixed j are then
modelled as a polynomial in z, where z; is
the normal equivalent deviate of the ith
centile, so that

— 2 q
g=byt bz + bz +.+bz (14),

where the degree g; of the polynomial may
differ from one value of j to another. This
restricts the distance between centiles and
prevents the resulting curve to cross.
Combining equations (13) and (14) gives
a linear model which simultaneously fits all
the centiles estimated in stage one, and
this can be fitted by least squares.

The method allows a considerable amount
of flexibility. However, in practice a good
deal of experimentation may be needed to
choose good values for the adjustable
parameters k, p and g. Authors
recommend to judge the suitability of a
particular set by counting the points falling
between adjacent centiles and comparing
these counts with expected values. In
theory, for any observation a corres-
ponding Z-score can be calculated by
solving a polynomial equation, though the
order of the polynomial may realistically
prohibit this [32].
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As certain variables observed over a wide
age range may need more complex curve
shapes than a single polynomial could
provide. Pan et al. [33] suggested dividing
the data into contiguous age groups, fitting
polynomials within each group and
smoothing points where these meet by
using an extra polynomial term. As an
alternative, Goldstein and Pan [34]
proposed that these age groups be defined
initially and that the fitted response be
made smooth across the join points by
equating derivatives of the curves on either
side.

3.5Non-parametric quantile regression
Other approaches for constructing the
reference curve include a range of
methods based on non-parametric
quantile regression [35]. These methods
allow quantiles to be estimated as
a smooth function of covariates without
imposing parametric distributional
assumption, thus they are valuable in case
that any transformation method is not able
to achieve normality over the full range of
relevant ages. The approach is robust to
the presence of outliers and moreover, the
procedure is unsupervised since all the
smoothing parameters are determined
adaptively.

Gannoun et al. [36] proposed three
methods using kernel estimation, local
constant kernel estimation and double
kernel estimation of conditional quantile
curves. Regarding the choice of kernels,
authors use the univariate standard normal
and uniform densities and also give some
guideline for the selection of the
bandwidths. Another example of using
quantile regression presented Wei at al.
[37]. For more details we refer to the
original papers [36], [37].

Regarding the goodness of fit, an elegant
way presents the worm plot, as shown by
Buuren [38].

4. Discussion

For constructing age-related quantiles
there are several different methods
available, each of them having both
advantages and limitations. Hence, it is
unlikely that a single one would be
appropriate in all circumstances.
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The parametric 'mean and SD model
benefits from being relatively simple and
easy to use, with the necessary techniques
available in most basic statistical
packages. It must be emphasized that the
validity of reference ranges depends
critically on the assumption of normality.
The approach is able to cope with some
heteroscedasticity by modelling the SD as
age-varying and skewed data may
sometimes be corrected by logarithmic or
shifted logarithmic transformation.
However, time-varying skewness and non-
normal kurtosis cannot be easily
accommodated. The resulting centile
curves and Z-scores can be expressed as
explicit formulae. The fact that the method
suffers from the well-known limitations of a
polynomial curve shape can be greatly
improved by using the family of fractional
polynomials.

In the field of fetal measurements this is the
approach which has been repeatedly used
so far as a wide range of fetal biometric
measurements available from ultrasound
scanning fulfil sufficiently the assumption
of normality. Nevertheless, it is not always
tenable and alternative techniques are
required.

The LMS method with penalized likelihood
is extremely flexible and widely applicable
producing convincing centile curves
irrespective of the complexity of the curve
shape. It can easily cope with time-varying
skewness, though some non-normal
kurtosis may remain. Appealing by-product
of the method is that L(f), M(f) and S({)
curves may be of interest in their own as
they facilitate further investigation in the
underlying structure of the dataset.
Although succinct formulae for centile
curves are unobtainable, Z-score for any
individual measurement can be easily
calculated. There are, however, some
drawbacks with the smoothing approach.
These are the presence of 'edge effects'
(spurious changes), if the data are sparse
near the ends, or non-uniform smoothing, if
there are unequal numbers of obser-
vations throughout the age range [25].

© 2010 EuroMISE s.r.o.
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The LMS method has been increasingly
used in recent years and it was the chosen
procedure for creating the 2000 CDC
Growth Charts for the United States [2].
The introduction of specially designed
programs (LMSChartmaker by Cole and
Pan [39]) and packages for general
statistical programs (package Imsqreg by
Carey [40] for R) made the method rather
accessible.

A proposed extension to the LMS
approach, the LMSP method is even more
flexible as it takes into account the
presence of kurtosis in the distribution.

The main advantage of the HRY method is
that no assumption about the nature of
distribution is made. The approach is
flexible and capable of handling many
patterns of growth, with the suggestions of
Pan et al. [33] and Goldstein and Pan [34]
making it even more so. Nevertheless, the
choice of degrees of polynomials requires
considerable experience and trial, and it is
not always clear how to improve the fit.
Although the formulae are available, the
estimation of the Z-score and centile value
for further observations is not simple,
unless a very basic model has been fitted.
The method is vulnerable to outliers and
requires specially written software, as well.
Non-parametric approaches based on
quantile regression are very robust,
extremely flexible, provide a much better fit
to the data than other methods [38] and
moreover, are fully unsupervised.
Although more detailed insight into the
issue of quantile regressions is not so easy
and straightforward compared to previous
approaches, the possibilities of
applications are very wide. The method
has potential of identifying the features in
the data undetected by other methods and
is rapidly entering mainstream statistics
[38]. Another compelling motivation for the
quantile regression approach is the ability
to extend the conventional unconditional
models depending only on the age to
models that incorporate prior growth and
other covariates. Further, the number of
implementations in statistical software is
growing (e.g. package quantreg by
Koenker[41]forR).

However, some drawbacks exist. The

approach lacks an explicit formula to
convert measurement into quantile and
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Z-score. The produced curves may be
irregular near the extremes, and are
generally less aesthetically pleasing [38].

5.Conclusion

Cole remarked [23] that fitting smooth
centile curves has always been something
of a black art. We have presented several
different approaches how to deal with the
constructing centile charts of the fetal size.

A closer understanding how the particular
method works can help us to reveal its
potential and advantages and lead us to
choose the most appropriate one for our
goal. On the other hand, knowledge of its
limitations may prevent us from
misinterpretation of the results and conse-
quently from false clinical conclusions and
suboptimal care.

The explicit formula that allows one to
convert a measurement into quantile or Z-
score was one of the requirements set forth
by a WHO expert committee [13]. This
would exclude the empirical methods such
as the HRY method and quantile
regression approach. Hence, the choice is
basically left to the trade-off between the
simplicity and usability of more limitary
parametric approaches, and the more
flexible and applicable but less user-
friendly models provided by the LMS,
respectively LMSP methods. The potential
of quantile regression models in the field of
fetal medicine remains to be further
explored.
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