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Abstract

With a rapidly-growing amount of biomedical 
information available only in textual form, there is 
considerable interest in applying NLP techniques to extract 
such information from the biomedical literature. Much 
of the research has paid special attention to extracting 
information about biomedical named entities. In this 

paper, we conducted a survey on biomedical named entity 
recognition and normalization, focusing on gene mention 
recognition and normalization. We believe this can help 
researchers to find work of their interest and interpret their 
own research.

Keywords
Recognition; Normalization; Text Mining

EJBI 2019; 15(2):11-16
Received:  April 29, 2019
Accepted: July 12, 2019
Published: July 19, 2019

Correspondence to:

Ruoyao Ding
School of Information Science and Technology,
Guangdong University of Foreign Studies, Guangdong, P.R. China
Email: ruoyaoding@163.com

1	 Introduction 
Biomedical researchers usually describe their experimental 

results in research publications. With the rapid growth of 
biomedical publications, the information of interest needs to be 
extracted automatically to avoid the time consuming and labor 
intensive process.

Named entity recognition and normalization are two common 
tasks in the biomedical text mining field. Together they provide 
a means to extract the unstructured information buried in the 
literature and put the extracted information to structured form. 
There already has been some work on the survey of biomedical 
named entity recognition and normalization. However, a more 
comprehensive and most updated version is still needed. In this 
paper, we conduct a survey to present current work on biomedical 
named entity recognition and normalization. Given the 
primary importance genes and their products play in biological 
and medical studies, this survey will focus on gene mention 
recognition and normalization. We hope this can help researchers 
in biomedical text mining field to find the information of their 
interest and interpret their own research.

2.	 Gene Mention Recognition
The task of gene mention (GM) recognition is to automatically 

recognize gene/protein names mentioned in text. This task has 
received wide attention, and has been used in several challenge 
evaluations such as BioCreative I [1] and BioCreative II [2]. 
Other annotated corpora have also been constructed for system 
development and evaluation purpose.

There are several challenges of the gene mention recognition 
task: 

(1) No. of genes: The number of gene names is in the millions and 
new names are created continuously. 

(2) Name variations: Authors usually do not use proposed 
standardized gene names. 

(3) Polysemy: Gene names often also refer to other entities such 
as disease names.

2.1 Gene Mention Recognition systems

Approaches to gene mention recognition can be categorized 
into two major classes: rule-based approaches and machine 
learning-based approaches.

While rule-based gene mention recognition approaches do 
not require annotated data to train a system, they do require 
domain experts to be closely involved in developing the rules. The 
following three systems are examples of gene mention detectors 
that rely on manually developed rules.

Hanisch et al. [3] presented a dictionary matching based 
system that detects fly, mouse and yeast gene names from 
biomedical text. Fukuda et al. [4] proposed a method which 
incorporates two new concepts called c-term (a concept based on 
orthography) and f-term (a concept that is based on terms that 
correspond to types of biological entities) (details about those 
two terms will be introduced later in the Gene Normalization 
chapter). Narayanaswamy et al. [5] developed a system which 
extracts multiple types of named entities including gene names. 
Their system is based on a manually developed set of rules that 
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rely upon some crucial lexical information, linguistic constraints 
of English, and contextual information and develop the notion of 
c-term and f-term in named entity recognition.

The machine learning-based gene mention recognition 
approaches require annotated data to train a system. Thus, 
domain expertise is now required in the development of the data 
annotation and less during the system training.

In the machine learning-based gene mention recognition 
approaches, the gene mention recognition task is often treated as 
a sequence labelling problem (label the tokens in the text using 
the tags). BIO (or IO) tags for the text are commonly used to 
represent the boundaries of gene mentions where B represents the 
beginning of the gene name in text, I is assigned to a token inside 
the gene mention and O is assigned to token that are outside the 
gene mentions.

Among the machine-learning based systems, Banner [6] is 
widely used for recognizing biomedical named entities including 
gene mentions. It is based on conditional random fields and 
applied orthographic, morphological and shallow syntax features. 
Liu et al. [7] trained a classification system using Conditional 
random field (CRF) [8] to classify each word in the literature to 
the BIO tags. They applied BioThesaurus [9], a comprehensive 
collection of gene names to entries in the UniProt Knowledgebase, 
for dictionary lookup and used the matching information as a 
feature. Huang et al. [10] considered the gene mention task as 
a classification problem and applied support vector machine 
(SVM) [11] to solve it. Chen et al. [12] proposed a gene mention 
recognition system for biomedical literature using a dictionary 
and Support Vector Machine. Zhou et al. [13] proposed an 
ensemble of classifiers for gene mention recognition. They 
combined three classifiers, one Support Vector Machine and two 
discriminative Hidden Markov Models using a simple majority 
voting strategy. Other machine learning based gene mention 
systems can be found in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. 

2.2 Gene Mention Recognition Corpora

High quality gene mention corpora are important for the 
development of any type of gene mention recognition system. 
Even for the rule-based system, more accurate rules can be made 
by analyzing the instances in the corpora.

The GENIA corpus [25] is a collection of 2000 abstracts 
extracted from Medline database. Multiple biomedical named 
entities, including gene names, are annotated. It is focused 
on a subset of human hematology. The PennBioIE corpus 
[26] consists of 1414 Medline abstracts on cancer. 24 types of 
biomedical named entities, including gene names, are annotated. 
The BioCreative 1 GM corpus [1] contains 15,000 sentences 
from Medline abstracts. Genes and related entities mentions are 
annotated. The BioCreative 2 GM corpus [2] contains 20,000 
sentences from Medline abstracts (15,000 of which were used 
previously in BioCreative 1).

3.	 Gene Normalization
The task of gene normalization (GN) is to automatically link 

a gene mention to a database entry for the gene (product). Other 
than the challenges stated in the gene mention recognition task, 
the challenges for the gene normalization task also include: 

(1) identifying the species for the gene mentions since most 
gene (product) knowledge bases contain species-specific entries, 
and 

(2) disambiguation since multiple gene entries may share the 
same short name (symbol).

3.1 Gene Normalization Systems

The following were the top performing systems in the 
BioCreative I [27] and BioCreative II [28] Challenge GN Tasks. 
ProMiner [29] is a dictionary-based GN system which is 
characterized by the inclusion of different biomedical dictionaries 
and manual clean-up of a dictionary. BioTagger [7] tackles the 
GN problem with the steps: (1) dictionary lookup to obtain a list 
of mapping pairs of gene mention and database identifier, (2) 
machine learning that considers features such as the gene mention 
recognition, name ambiguity, and token shape information, and 
(3) a similarity based method to associate Entrez gene records 
with phrases detected by the gene mention tagger. GNAT [30] is a 
GN system encompassing four steps: named entity recognition for 
genes and species, validation of gene mentions, correlating gene 
mentions with species, and finally gene mention disambiguation. 
GeNo [31] tackles the GN problem by employing a carefully 
crafted suite of symbolic and statistical methods.

In BioCreative III [32], the GN task was further extended to 
cover genes of all relevant species in the literature corpora. Among 
the systems, Bhattacharya et al. [33] tried to associate a species 
name with a gene name by considering their proximity to the gene 
mention. Dai et al. [34] employed a multistage GN procedure and 
selected dictionary entries from only the top 22 most common 
species in NCBI (from 7283 species) to speed up the GN process. 
A document-level gene normalization system, called GeneTUKit 
[35], employed features from the local context as well as the global 
context of the whole full-text article. GenNorm [36] follows three 
steps: gene name recognition, species assignment, and species-
specific gene normalization, and uses SR4GN [37] for assigning 
species to gene mentions. GenNorm has been widely used in 
text mining systems that require GN, such as in PubTator [38] 
and in an event extraction pipeline [39]. GNormPlus [40], as an 
updated version of GenNorm, refined the gene mention process 
by training the mention recognizer on a new corpus with gene, 
gene family and protein domain annotations. It also integrates 
several advanced text mining techniques, including SimConcept 
for resolving composite gene names.

3.2 Gene Normalization Corpora

High quality gene normalization corpora are important for 
the development of any type of gene normalization system.
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The BioCreative I gene normalization corpus [27] and the 
BioCreative II gene normalization corpus [28] focused on the GN 
task for yeast, fly, and mouse genes and human genes respectively. 
Both of these corpora annotate gene mentions found in abstracts. 
In contrast, the BioCreative III gene normalization corpus [33] 
annotates full length articles and is not limited to specific species.

The BioCreative I gene normalization corpus consists 15,000 
abstracts for training, 468 abstracts for developing, and 750 
abstracts for testing. All these abstracts are annotated in abstract 
level, not mention level (only a list of database identifiers is 
given for each abstract, without any location information). 
No corresponding gene name in the abstracts for the database 
identifier is provided in this corpus. The BioCreative II gene 
normalization corpus consists 281 abstracts for training, and 
262 abstracts for testing. All these abstracts are also annotated in 
abstract level, but the corresponding gene names in the abstracts 
are given for each database identifier. The BioCreative III gene 
normalization corpus consists 32 fully annotated articles and 500 
partially annotated articles for training. For testing, it provides 50 
articles as gold standard and 507 articles as silver standard.

4.	 Other Biomedical Named Entity 
Recognition and Normalization 

There has been considerable interest in the detection and 
normalization of other types of biomedical entities such as 
diseases, chemical compounds and drugs.

4.1 Other Biomedical Named Entity Recognition

tmChem [41] is a chemical named entity recognition system 
created by combining two Conditional random field (CRF) models 
in an ensemble. The two models in the system used different 
tokenization methods, feature sets, CRF implementations, 
CRF parameters. Lu et al. [42] developed a chemical named 
entity recognition system based on mixed CRFs with word 
clustering. Lowe et al. [43] proposed a system for chemical entity 
recognition based on grammar and dictionary. Their system uses 
a mixture of expertly curated grammars and dictionaries, as well 
as dictionaries automatically derived from public resources.

Chowdhury et al. [44] presented a CRF based approach for 
disease mention recognition. The features they used include 
disease specific contextual features, orthographic features, 
general linguistic features, syntactic dependency features and 
dictionary lookup features. Kaewphan et al. [45] developed a 
system for disease mention recognition. Their system was based 
on an existing named entity system, NERsuite, supplemented 
with UMLS dictionary features.

Other biomedical named entity recognition systems can be 
found in [46, 47, 48, 49, 50].

4.2 Other Biomedical Named Entity Normalization

Leaman et al. [41] paired their chemical named entity 

recognition system with a dictionary approach for normalization. 
They used a dictionary of chemical entities and their names 
that was collected from MeSH and ChEBI. DNorm [51] is a 
disease normalization system, which uses a linear model to 
score the similarity between mentions and concept names. 
DNorm has an interesting approach of learning term variation 
directly from training data. Kaewphan et al. [45] developed a 
disease normalization system, which was based on their disease 
mention system. They combined compositional word vector 
representations with CRF to map the recognized mentions to the 
UMLS concepts. Other biomedical named entity normalization 
works can be found in [52, 53, 54, 55].

5.	 Discussion
1.1 Biomedical Named Entity Recognition based on Deep 
Learning

In recent years, deep learning has drawn much attention 
in biomedical named entity recognition. Hence, we will next 
describe some novel work of biomedical named entity recognition 
in the last three years based on deep learning. Hemati et al. [56] 
combined Long Short Term Memory (LSTM) nerual networks 
and CRF to detect drug named entity, and achieved state-of-the-
art performace. Korvigo et al. [57] first used Convolutional Neural 
Network (CNN) to encode the text, then applied Recurrent Neural 
Networks (RNN) to recognize drug named entity. Xu et al. [58] 
constructed a LSTM+CRF network to tackle the task of disease 
named entity recognition. Zhao et al. [59] developed a nerural 
network based on CNN to recognize disease mention. Zhang et 
al. [60] constructed a network using LSTM+CRF structure to 
recognize the named entities in electronic health records. Zhu et 
al. [61] used n-gram and context as input of CNN to detect named 
entities in biomedical text. Luo et al. [62] developed an attention 
based bidirectional-LSTM+CRF model to recognize drug named 
entity. Sinilarly, Habibi et al. [63] compared LSTM+CRF with pure 
CRF model, and shown that deep learnin model outperformed 
traditional machine learning model in the tasks of recognizing 
gene mention, chemical mention, species mention, and disease 
mention. Lyv et al. [64] constructed three models based on 
RNN, RNN+CRF, and BiLSTM+RNN. The three models were 
compared in the task of gene mention recognition. Experimental 
results shown BiLSTM+RNN model outperformed the other two.

5. Conclusion
	 Named entity recognition and normalization are tasks to 
recognize entities mentioned in natural language text and link 
them to database IDs. We have conducted a survey of works related 
to biomedical named entity recognition and normalization, 
focusing on gene mention recognition and normalization. We 
believe this work will assist researchers to find the information 
of their interest and interpret their own research. In the further, 
we plan to conduct another study on biomedical named entity 
relation extraction.
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