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1. Introduction

Medical data need to be structured to achieve semantic 
interoperability. Semantic interoperability is essential for 
Electronic Medical Records (EMR) since they must serve as a 
seamless communication platform, allowing data to be compatible 
whenever a patient migrates from one physician to another [1,2]. 
Semantic interoperability ensures that the meaning of medical 
concepts can be shared across systems, thus providing a digital 
and common language for medical terms that is understandable 
to humans and machines.

For instance, the sentence “patient g2-p2 experiences asthma 
attack” includes information about pregnancy history, in the 
form of the abbreviated term “g2-p2”. If the same sentence were 
written using a standard for semantic interoperability, such as 
SNOMED CT [3], the abbreviation “g2-p2” would be replaced 
by “gravida 2 or second pregnancy and para 2 or parity 2”. In 
the abbreviated sentence, if the term “g2-p2” were not detected 
by a healthcare information system that employs SNOMED 
CT, such as a Clinical Physician Order Entry (CPOE), the 
person responsible for processing the medication order might 
misunderstand or fail to recognize it, leading to an erroneous 
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interpretation and inappropriate drug administration, which 
increases the risk for the patient.

Additionally, a large amount of medical data produced currently 
are free text medical notes [4], such as SOAP notes and discharge 
summaries. These documents are often created in varied writing 
styles [5], using informal abbreviations that do not follow 
standard medical nomenclature [6]. Since these documents are 
implicitly composed in an unstructured format, it is necessary to 
parse them and identify specific information in the text to finally 
generated structured data that can be shared among different 
systems. In this process, detecting abbreviations correctly is a 
key requirement since terms unknown to the system could be 
ignored or misrepresented in the final output.

The problem of detecting abbreviations falls in one of natural 
language processing tasks, which is named entity recognition 
(NER). NER task is identifying specific terms designating medical 
concepts within the text [7], in our case is identifying the presence 
of abbreviations. This is done in two steps: abbreviation detection 
and then abbreviation disambiguation, which is a special case of 
word sense disambiguation (WSD) [8]. In this study, we focus on 
the first step, abbreviation detection, which remains a challenging 
problem, due to the variability of the input.

A previous study [9] showed the potential usefulness of machine-
learning-based (ML-based) abbreviation detection methods for 
predefined abbreviations in English texts and medical notes. 
Hence, that study focused on detecting formal abbreviation with 
predefined extracted features using traditional machine learning 
algorithms, such as decision trees, random forests, and support 
vector machines. Another previous study to detect abbreviation 
also used machine learning algorithm, such as stochastic gradient 
descent [10]. While deep learning algorithm such as bidirectional 
LSTM and CNN are used to detect more complex named entity 
such as nested named entity [11] and biomedical named entity 
[12]. In contrast, our study focuses on detecting informal 
abbreviations that is a noisy entity, which has not been covered 
by the previous study.

To detect such informal abbreviations, we propose a Long 
Short-Term Memory (LSTM) based model [13], a form of 
deep learning technique. Deep learning algorithms a subset of 
machine learning methods-currently offer the best performance 
in tasks that involve learning from sequential data, such as free 
text medical notes. There are several deep learning algorithms for 
the information extraction task, such as Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), Recursive 
Neural Network, Neural Language Model, and Deep transformer 
[14]. The information that can be extracted from EMR using 
deep learning are varied, from a patient phenotyping using 
CNN [15] to named entities using RNN [16]. In our informal 
abbreviation extraction study, we choose RNN variant, an LSTM 
based model as our proposed model. It learns without the need 
of prior features extraction processes [17]. Although the feature 
extraction task is particularly difficult in the case of abbreviations 
detection, the LSTM model can be effective, since it also takes 
into consideration the context in which sequences occur to 

detect the intended entity at each location. In other words, the 
model can detect abbreviations by exploring their surroundings. 
For example, the LSTM model is able to detect that “G3P3” is 
an abbreviation in the sentence “pregnancy-labor-spontaneous 
delivery to a G3P3”, as is the case of “g3.p2A1” in the sentence 
“pregnancy-labor-spontaneous delivery to a g3.p2A1”. It does so 
by understanding that these words occur in similar contexts.

This study presents deep learning modelling using LSTM to detect 
informal abbreviations from medical notes sentences, which is 
a vital task for semantic interoperability in EMR. Additionally, 
our approach expands the field of application of the LSTM model 
since the technique was not used before for this kind of task.

2. Methods

In order to detect the informal abbreviations in the free text 
medical notes, we propose an LSTM based method. The proposed 
method has components corresponding to the following 
problems, first as a detection of noisy entities, i.e., terms to be 
identified in a set of unstructured data. Second, the detection task 
suffer from the problem of class imbalance, in which different 
types of entities have very difference frequency of occurrence in 
the data, making some of them underrepresented.

Free text medical notes are an example of this kind of data. A 
similar case is that of Twitter messages (tweets [18]). Both types of 
data consist of noisy entities that lack implicit linguistic formalism 
(e.g. improper punctuation, spelling, spacing, formatting) while 
also including abbreviations [19]. The LSTM model outperforms 
other strategies when used for tasks of entity recognition in this 
kind of noisy data set.

Noisy entities are particularly difficult to detect if the surrounding 
context is not considered, including the order and relative 
distribution of the entity’s occurrence. The entity’s order can 
be represented by a word2vec matrix, while the entity’s relative 
distribution can be represented by Bag of Words (BoW) matrix. 
For this reason, the addition of these representations to the input 
of the model can increase its accuracy.

Additionally, the problem of class imbalance must be addressed. 
It happens when the total number of items in a data class (in this 
case, abbreviations) is far less than the total number of items in 
another class (non-abbreviation). To deal with this problem, one 
common approach is to use oversampling [20], which consists of 
increasing the number items of the under-represented class, so it 
has a greater impact on the machine learning algorithm.

Our method consists of two parts: pre-processing, with data 
oversampling to address class imbalance; and processing, with 
additional inputs to represent word context (word2vec, BoW). 
Figure 1 illustrates the detection flow using our framework.

The pre-processing part is further divided into two steps, sliding 
window and samples generator. The first step (sliding window) 
involves breaking the longer and varied-length sentences into 
fixed groups of words. This is necessary because the LSTM model 
requires short fixed length sequential inputs. This transformation 
also alleviates the problem of limited data sets (Section 5.4), since 
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Figure 1: Framework for informal abbreviations detection using LSTM.

it increases the number of samples. The second phase of pre-
processing (samples generator) increases the number of samples 
of infrequent data [21], to improve the LSTM model’s prediction 
performance, since it performs better with more balanced data.

The strength of LSTM model is that it learns its word embedding 
input automatically, although it can also learn from a pre-trained 
word embedding. A pre-trained word embedding is represented 
as a matrix, which can be produced using a word representation 
algorithm, such as BoW and word2vec. In our abbreviation 
detection, we concatenate word embedding with the pre-
trained embedding, BoW matrix and word2vec matrix (step 3) 
to achieve higher performance. This takes advantage of the fact 
that the LSTM model (step 4) can process multiple features for 
its learning [22].

2.1 Pre-processing

The pre-processing process was designed for solving the problems 
of class imbalance and unfair learning of the LSTM classifier. 
The issue causes a low predictive performance of classifier to 
recognize the minority class.

To tackle the class imbalance issue, we use a sliding window [23] 
to split the input sentence into chunks, and a samples generator 
to increase the number of abbreviation samples. The sliding 
windows step creates fixed-length samples with size n, consisting 
of a sequence of words from the sentence, without any changes 
in the words themselves. In our case, we use window size 5 (n=5), 
and step 1 (the next window starts 1 word to the right), the in- 
put sentence “coronary artery disease history of seizure disorder 
GERD bipolar” would be chunked into five fixed size samples, 
starting with “coronary artery disease history of”, then “artery 
disease history of seizure”, and so on. We manually labelled 
words as abbreviation/non- abbreviation for the training process.

After fixed size inputs are produced, a samples generator is used 
to increase the ratio of abbreviation samples in the data set. This 
step is necessary to create fairer learning for the LSTM model, 
by reducing class imbalance from the input. By specifying 
the percentage of samples that should contain at least one 
abbreviation word, we determine the ratio of abbreviation/
non-abbreviation samples present in the input presented to 
the model.

2.2 Processing

The processing stage was designed with the consideration of 
sentence feature extraction. In this stage, we use a LSTM with 
one embedding layer, which is used as our baseline model. The 
common approach when using the LSTM model for entity 
classification from text is to convert each word in the sample to 
a word index, which is a positive integer. After that, each word 
index is turned into embedding vectors of fixed size [24] before 
being presented as input to the LSTM model.

A bidirectional LSTMs algorithm is used for our detection of 
informal abbreviations. The bidirectional LSTMs are an extension 
of traditional LSTMs that can improve model performance on 
sequence classification problems [25]. In problems where all 
time steps of the input sequence are available, such as free text 
sentences, the bidirectional LSTMs train two instead of one 
LSTMs on the input sequence. The first on the input sequence as-
is and the second on a reversed copy of the input sequence. This 
can provide additional context to the model and result in faster 
and even fuller learning on the problem.

We trained the model using additional pre-trained matrices such 
as word frequency or BoW matrix [26], and word2vec matrix [27] 
to increase our model performance. The BoW matrix represents 
the occurrence frequency of each word in relation to the complete 
vocabulary in the data set. The word2vec matrix represents words 
as vectors in such a way that words which share similar contexts are 
closer in the vector space [28]. For example the BoW matrix of the 
word “5” in the sentence “A 5 yr boy brought by his parents because 
of 2 days of cough” is (0,1,0,0,0,0,0,0,0,0,0,0,0,0) and the vector for 
the word “5” is clustered together with the vector for the word “2”.

Based on the fact that the LSTM model can process multiple 
features to increase its performance [22], the additional matrices 
are concatenated with the embedding vectors of the baseline 
model. The BoW and word2vec matrices were used as additional 
input to the LSTM model based on the idea that abbreviation 
words have frequencies and vectors in the word2vec vector space 
that differentiate them from non-abbreviation words and ordinary 
English words. It is expected that the model’s performance would 
be increased with the inclusion of more relevant pre-trained 
features, represented by these additional matrices.
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In summary, our basic LSTM model used only embedding 
vectors as an input. The other input combinations we evaluated 
expanded this basic model by including additional preTrained 
features in the form of the BoW and word2vec matrices. To 
enable this additional input to the LSTM model it was necessary 
to include additional layers for each of the additional matrix 
of features [29]. Finally, all the LSTM layers in the model are 
concatenated to predict the abbreviation in the sample using 
LSTM hyper- parameters, such as dropout, dense, and activation 
layer. In our model, the hyper parameters are the same for all 
inputs combination.

3.  Experiments

We conducted the experiments to verify the performance of 
proposed LSTM-based method. The experimental conditions 
were designed to confirm the effectiveness of pre-processing 
and processing components described in the methods section. 
As for pre-processing component, we verified that oversampling 
the data set in the pre-processing part could increase the 
performance of the informal abbreviation classifier. As for 
processing component, we verified that concatenating the word’s 
representation such as BoW and word2vec in the embedding 
layer of the LSTM model could increase the performance of the 
informal abbreviation classifier.

We evaluated the precision of the classifier when the abbreviation 
samples are added, in comparison to the basic model. We also 
evaluated the precision when the word representation input such 
as BoW and word2vec are added as a multiple features inputs to 
the model.

3.1 Data Set

Our data was acquired from a publicly available medical notes 
corpus [30] in English. The data consist of medical notes of varied 
types from different medical specialties, such as progress notes, 
SOAP notes, discharge summaries, etc [31]. This corpus is quite 
general, and contains informal abbreviations, including various 
writing styles, such as upper and lower case only and mixed cases, 
alphanumeric, and alphanumeric with symbolic characters.

Table 1 shows the distribution of abbreviation words and non-
abbreviation words in the data set. A total of 475 sentences were 
extracted from randomly selected medical notes. A 475 sentences 
are able to represent most of the informal abbreviations for our 
case study. Using the preprocessing strategies we acquired 7159 
samples; 704 of those were abbreviation samples (10%) and 

6455 were non-abbreviation samples (90%). Furthermore, the 
vocabulary extracted from the data set consisted of 1629 unique 
words, including abbreviation words.

Each sample consists of a five sequence of words. We use the 
short sequence length, such as 5-words sample because in the 
classification task such as our case, it is easier to classify using 
shorter sequence length than longer sequence length [32]. The 
7159 5-word samples were split into training data set (80%) and 
test data set (20%). Both data sets had the same proportion of 
abbreviation samples. This ratio could be specified as a parameter 
of the samples generator.

3.2 Model Implementation

 We use bidirectional LSTM with forward and backward sizes 32, 
dropout of 0.3, and two dense layers, the first one with size 32 and 
ReLU [33] activation (to preserve the input’s sparsity), and the 
last one with activation softmax [34] for the final prediction with 
size 3. A batch size of 32 and 200 epochs were used for training.

From the same basic model, several combinations of inputs 
were implemented and evaluated. In the first test, only the word 
indices converted into embedding vectors with size 100 was used. 
For the remaining tests, we evaluated the combinations of: pre-
trained BoW only; pre- trained word2vec only; each of these 
vectors concatenated to the embedding vectors; a combination of 
BoW and word2vec; and all vectors together. The BoW matix had 
size 1629 (same as the size of the vocabulary), and the word2vec 
matrix had size of 100.

In the processing part, we only modified the input structures 
with embedding replacement and concatenation between 
embedding, BoW, and word2vec. The remaining LSTM layout 
such as sizes of layers, dropout, dense and activation layers are 
the same for all input combinations. The concatenation between 
embedding vectors and additional matrices uses LSTM with 
same configuration.

3.3 Evaluation Method

In To evaluate the performance of our classifier, we analyzed 
it from the perspective of both pre-processing and processing 
components in our proposed method. From the pre-processing 
perspective, we evaluate the model’s performance based on the 
abbreviation samples added to the pre-processing part of our 
methods. We hypothesize that more balanced sample increases 
the performance of classifier. From the model’s processing 
perspective, we evaluate the model’s performance based on 

Free text data Size Example
Sentences 475 sentences "coronary artery disease history of seizure disorder GERD bipolar"

Unique vocabularies 1629 vocabs PSA, GERD, mg, TEST, Cardiolite, cm, Dr, STRESS
Abbreviation words 279 words Q-fever, h/o, mg, G3P3, PSA, PMH, DVT, ml, cm, Dr

Non-abbreviation words 8786 words TEST, STRESS, incidental, DATA, Cardiolite
5-word abbreviation samples 704 samples "of seizure disorder GERD bipolar"

5-word non-abbreviation samples 6455 samples "coronary artery disease history of"

Table 1: Data set distribution.

8
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the all concatenation combination of the input matrices from 
the embedding layer of LSTM, pretrained BoW matrix, and 
pretrained word2vec matrix. We hypothesize that concatenation 
of inputted matrices increase the classifier’s performance.

Since the original data set suffers from the class imbalance, 
data sampling evaluation is required to understand the effect of 
increasing the number of samples. The informal abbreviation is a 
special case of Out-of-Vocabulary (OOV) word, which requires 
more features to differentiate it from the ordinary words, 
therefore the evaluation of input combinations was performed to 
assess the effect of inputs combination to the model.

We focused on increasing the model’s precision, since the cost 
of false positives is high. Due to the number of negative (non-
abbreviation) samples is very large, then the model has low 
precision. The low precision will cause many words classified as 
abbreviations or high false positives. When false positives are too 
high, the system is not reliable anymore as a detection system. 
Precision is more related to the positive class (abbreviation 
class) than to the negative class (non-abbreviation class), since it 
measures the probability of correct detection of the positive class.

Using small windowed size sample, such as 5-words sample, 
the recall and F1-score are not as high as the precision because 
the effect of number of words that are analyzed in the context 
of an abbreviation word. When the window size is large, recall 
increases because words farther away from the abbreviation word 
will be taken into account and more abbreviation words are more 
likely to be found. Precision will be higher when the window size 
is small [35].

4. Results

The basic model in Table 2, which is the baseline, had precision of 
68.6%. The basic model in Table 2 used only embedding as input 
to the model. The original data set contains 10% of abbreviation 
samples, these samples represented only 2% of abbreviation 
words in total, and we believe that was the reason for the low 
performance of this model.

4.1 Performance using Samples Generator

In Table 2, we measure the precision’s average and its standard 
deviation, recall’s average and its standard deviation, and F1-
score’s average and its standard deviation from five trials of each 
abbreviation samples modelling.

We used a samples generator to increase the precision of our 
baseline model, by adding more abbreviation samples to the 
original data set. Table 2 shows the precision improvement 
as the ratio of abbreviation samples is increased. For recall 
and F1-score, the 40 percent of abbreviation samples give the 
highest results.

We progressively increased the number of abbreviation samples 
in 10% steps, until an intended precision was reached. The 
enhanced data set contained 90% of abbreviation samples, 
representing 18% of abbreviation words in total.

When the abbreviation samples are 90% of the total samples, the 
new data set raised the precision of the model to 91.4%, recall 
was 48.7%, and F1-score was 63.3%. The precision was steady 
increased until its highest precision at 90% of abbreviation 
samples, while the recall and F1-score were fluctuating increased. 
The highest recall was 55.1% and F1-score was 65.2% were at 40% 
of abbreviation samples. The new data set is then used as a baseline 
for the next experiment using additional inputted matrices.

4.2 Performance using additional matrices

In Table 3, we measure the precision’s average and its standard 
deviation, recall’s average and its standard deviation, and 
F1-score’s average and its standard deviation from five trials 
of each input combinations modelling. Table 3 shows the 
precision improvement when the embedding is replaced with 
the BoW matrix, concatenation of embedding with BoW matrix, 
concatenation of BoW matrix with word2vec matrix, and 
concatenation of embedding, BoW matrix, and word2vec matrix.

The recall and F1-score of the model increased when the 
embedding is replaced with the word2vec matrix, concatenation 
of BoW matrix with word2vec matrix, and concatenation 
of embedding, BoW matrix, and word2vec matrix. For the 
concatenation of embedding with BoW matrix, the recall was 
slightly increased, while the F1-score was not changed.

The BoW matrix increased the precision of baseline model with 
the 90% of abbreviation samples to 91.6%. The BoW matrix 
and word2vec matrix concatenation increased the precision 
to 92.0%. The input addition of BoW matrix to the embedding 
of baseline model increased the precision to 92.6%. Finally, 
concatenation of embedding, BoW matrix, and word2vec 
matrix increased the precision to 93.6%. For recall, the word2vec 
matrix increased the model’s recall to 55.8%, the concatenation 

Abbr samples Precision (Avg) (SD) Recall (Avg) (SD) F1-score (Avg) (SD)
10 percent (baseline) 68.60% 14.1 38.20% 0.3 48.60% 4.1
20 percent 70.60% 15.1 46.10% 2.4 55.00% 4.6
30 percent 77.10% 7.9 42.70% 5.8 54.50% 3
40 percent 80.40% 6.1 55.10% 1.7 65.20% 0.8
50 percent 83.20% 4.2 48.30% 3.3 57.30% 3.3
60 percent 85.00% 5.7 49.50% 2.7 62.40% 2.1
70 percent 85.10% 5.9 49.50% 2.8 62.40% 1.2
80 percent 91.10% 8.6 45.50% 4.9 60.30% 3.8
90 percent 91.40% 1.7 48.70% 6.2 63.30% 5.2

Table 2: Improvement using samples generator.
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of BoW and word2vec increased the model’s recall to 53.1%, 
the concatenation of embedding and BoW increased slightly 
the model’s recall to 48.8%, and the highest recall was 57.6% 
that achieved by concatenation embedding, BoW matrix, and 
word2vec matrix. The F1- score was increased by word2vec to 
63.8%, by concatenation of BoW and word2vec to 67.2%, and the 
highest F1-score by concatenation embedding, BoW matrix, and 
word2vec matrix.

5. Discussions

The precision of the results is lower than the preliminary 
evaluation. However, considering that the rate of negative The 
results showed that the LSTM based model could accurately detect 
abbreviations made in diverse writing styles on free text medical 
notes. In addition, our model was able to predict abbreviations 
even with a small number of abbreviation words in the data set.

The LSTM model’s ability to predict the abbreviations relies on 
the fact that it learns from the context in which words appear 
in sequences [36]. Most medical notes are written following a 
certain narrative, which creates a relevant context in the sequence 
of words [37], therefore, although some words are informal 
abbreviations, the LSTM is able to recognize them by learning 
from surrounding words [38].

The precision, recall, and F1-score of model increases by adding 
more abbreviation samples and concatenating inputted matrices. 
In our case, we focus on the precision of classifier, because it is 
meaningful for information extraction tasks that often demanding 
for a high precision [39]. The recall and F1-score are not as high 
as the precision, and it is common for the information extraction 
tasks with small windowed size sample, such as 5-words sample 
[35].

From the pre-processing perspective, we discuss the effect 
of sample population in relation with the model’s precision 
increment. From the processing perspective, we discuss the effect 
of additional pre-trained features in elation with the model’s 
precision increment.

5.1 Effect of Sample Population

In our analysis, we observed that the LSTM baseline model’s 
precision can be increased by adding more abbreviation samples 
as shown in Table 2. Every 10% of abbreviation samples addition, 
the precision increases from 0.3 to 6.5 points. The lowest 
precision’s increment is from

80% to 90% of abbreviation samples, while the highest precision’s 
increment is from 20% to 30% of abbreviation samples. Usually, 
LSTM has a good performance in large data sets with little class 
imbalance [40]. By combining a sliding window and a samples 
generator, it was possible to increase the number of samples, 
while reducing the class imbalance, which allowed for an increase 
on the model’s precision.

5.2 Effect of Additional Pre-trained Features

It was also possible to increase the LSTM baseline model’s precision 
by including additional pre-trained features as a complementary 
input as shown in Table 3. The addition of BoW to the model’s 
input increases the precision from 0.2 to 2.2 points. The addition 
of word2vec increases the model’s precision if it also includes the 
BoW matrix addition. This takes advantage of the fact that the 
LSTM model can process multiple features for its learning [22]. 
Initially, the basic input-embedding vectors is used to differentiate 
between the classes in the binary classification (abbreviation vs non-
abbreviation). As additional features are added to the LSTM model, 
it can improve its ability of differentiating between classes. For this 
end, word frequency (BoW) and word2vec vectors are commonly 
used features in natural language processing [41].

Adding the BoW increased the model’s precision. When using 
a pre-trained BoW instead of the word2vec, an even higher 
performance could be obtained. This result shows that the LSTM 
model for the detection of informal abbreviations is better at 
learning the information about word frequency represented 
by the BoW matrix, when compared to the information about 
word2vec matrix. This is due to the small number of abbreviation 
words in the data set, which makes the model separate clearly 
between abbreviation words that have low word’s frequency 
and non-abbreviations words, which have higher word’s 
frequency. In comparison with the word2vec, the small number 
of abbreviation words makes the model difficult to differentiate 
between abbreviation words and non- abbreviation words due to 
the less contexts available from the corpus data set.

5.3 Detection of informal abbreviation to achieve high degree of 
semantic interoperability

Interoperability standards, such as SNOMED CT, state 
that medical terms should be expressed in a structured and 
unambiguous way, providing a semantic expression whose 
meaning can be agreed upon by different systems, in a consistent 
and clearly expressed manner.

Inputs Precision 
(Avg) (SD) Recall (Avg) (SD) F1-score 

(Avg) (SD)

Embedding (baseline) 91.40% 1.7 48.70% 6.2 63.30% 5.2
Word2vec 74.80% 2.6 55.80% 2.7 63.80% 1.2

BoW 91.60% 2.4 43.20% 1.5 58.70% 1.3
Embedding+word2vec 84.70% 5.7 45.60% 1.7 59.20% 1.5

BoW+word2vec 92.00% 4.6 53.10% 3.4 67.20% 2.6
Embedding+BoW 92.60% 8 48.80% 6.6 63.30% 3.7

Embedding+BoW+word2vec 93.60% 2.7 57.60% 8 68.90% 5.5

Table 3: Improvement using additional matrices.



EJBI – Volume 16 (2020), Issue 1

21 Heryawan L, et al. - A Detection of Informal Abbreviations from Free Text…

However, in the case of free text medical notes, medical 
expressions are sometimes written using informal abbreviations 
that may not be detected by SNOMED CT based processors. This 
could negatively impact patient care and generate burden for 
third party usage [42].

It is not sufficient that the physician who wrote the medical note is 
able to understand it, multiple people who participate in the medical 
care process must understand them and agree on the meaning of all 
terms. In this sense, if informal abbreviations, such as those shown in 
Table 1, can be clarified in a disambiguation process, higher degrees 
of semantic interoperability can be achieved.

This allows relevant clinical information to be recorded using 
consistent, common representations during a consultation and 
supports the sharing of appropriate information with others 
involved in delivering care to a patient. 

5.4 Limitations

This study had the following limitations. First the data set was 
composed of random samples from a public medical notes 
database, which may not fully represent all the writing styles found 
on real world medical notes. To further validate and improve the 
results, it is necessary to use larger data sets with medical notes 
from different hospitals and clinical settings. Additionally, the 
data set itself was not so big in comparison to other studies on 
natural language processing. However, in the specific context of 
medical notes, this is expected, since, due to issues of privacy and 
confidentiality, most studies can only have access to a limited 
number of real life medical notes. In previous studies, mtsamples.
com data set are utilized as a bench-marked of clinical study, such 
as for extracting family history diagnosis from clinical texts [43] 
and for identifying representation of drug use [44]. In addition, 
because one of our evaluation is to evaluate the classifier to 
detect informal abbreviations across many categories with class 
imbalance problem, such as the number of abbreviation words is 
far less than the number of non- abbreviation words, the public 
data set such as mtsamples.com fit properly for our study. We 
argue that if the classifier has high performance in detecting 
abbreviations with a far less population, then it should perform 
better for detecting a higher population of abbreviations that 
commonly found in the real data set.

5.5 Generality
This study can be extended to detect multiple undefined medical 
entities from free text medical notes, such as symbolic terms, for 
example ‟(+)”, ‟(-)”, and ‟(↑)”, with diverse variation of writing 
styles similar to the informal abbreviations cases. A symbolic 
terms are kind of abbreviated version of common words that are 
often used in the medical notes to express the patient’s condition, 
such as ‟(+)” for ‟positive”, ‟(-)” for ‟negative”, and ‟(↑)” for 
‟increased”.

6. Conclusions

Using the LSTM model is innovative to recognize informal 
abbreviations with diverse writing styles that are commonly 
found in the free text medical notes. Our approach differs with 

the previous approach that only focus on the formal abbreviation 
with the predefined features [9]. Using our approach, the 
precision for the informal abbreviation detection is 93.6%, 
recall is 57.6%, and F1- score is 68.9%, with using only small 
population of data set. Thus, our study will provide a case 
study for future NER researches using small data set. We 
use the precision as an evaluation metric because we want to 
minimize false positives or to optimize the specificity of our 
classifier. Overall, other metric such as recall and F1-score can 
be still be used if necessary.

For possible future extension of our work, it will be useful to 
develop a writing support systems, which can recognize informal 
abbreviations in real-time while the physician is typing it and raise 
appropriate indicators for the informal abbreviation meaning 
confirmation, thus increase the semantic interoperability for 
EMR system.
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