
en28 Original Article

Using TTCN-3 for testing the interoperability of HL7v3

based applications

Alexandru Egner1, Florica Moldoveanu1,2, Nicolae Goga1,3

1 University Politehnica of Bucharest, Romania

2 HL7 Romania Chair

3 University of Groningen, Netherlands

Abstract

HL7v3 standard was designed to facilitate communication between all types of eHealth applications, regardless of the

domain of activity. The �exibility of the HL7v3 messages led, however, to proprietary de�nitions of HL7v3 messages and

structures. In order to unify the communication in di�erent domains, pro�les have been developed and standardized.

In this context, testing plays an important role in assuring interoperability, as well. This paper presents a method

to test the interoperability of HL7v3 applications, using the standardized TTCN-3 test scripting language and its

corresponding TTCN-3 test system. The full testing process is described, highlighting all the components involved and

providing guidelines for implementing them. This approach requires testers to be familiar to the TTCN-3 environment.

Keywords

HL7v3, TTCN-3, testing, QED, eHealth

Correspondence to:

Alexandru Egner

University Politehnica of Bucharest, Romania e-mail: alexandru.egner@cs.pub.ro

EJBI 2012; 8(4):28�32

1 Introduction

Testing the interoperability of HL7v3 based applica-
tions plays an important role in the growth of the eHealth
community. HL7v3 is a very complex standard and its
characteristics make testing a di�cult task. This paper
proposes a new approach to the interoperability testing
of HL7v3 applications. The solution was validated in
the context of a HL7v3 pro�le, Query for Existing Data
(QED). However, it is adaptable to other pro�les, as well.

The solution is based on the TTCN-3([1]) test scripting
language and TTCN-3 test system. The most important
advantage of this approach is that TTCN-3 is a standard-
ized testing technology, which is reliable, very �exible and
independent of the platform and the technology of the sys-
tem under test. In addition, the TTCN-3 test system is
portable and modularized. This paper presents the imple-
mentation details of the testing procedure, with highlight
on adapting HL7v3 applications to the TTCN-3 test sys-
tem.

2 Testing HL7v3 applications

HL7v3 was designed to facilitate communication be-
tween virtually any type of eHealth application, regard-
less of its corresponding healthcare domain. However, the
way HL7v3 was designed caused sometimes interoperabil-
ity issues. HL7v3 allows implementers to de�ne custom
message structures. This led to the development of many
applications that communicate medical data in propri-
etary formatted messages. To overcome this, HL7v3 pro-
�les have been developed and standardized for di�erent
healthcare domains. These pro�les are the �rst step to-
wards HL7v3 interoperable systems.

In this context, interoperability testing plays an impor-
tant role in the growth of the HL7v3 community. However,
testing the interoperability of HL7v3 based applications
is especially di�cult, because of the di�erences between
message structures. Testing usually focuses on a speci�c
HL7v3 message structure, which limits the applicability
of the testing solution. This paper proposes, however,
a generic approach to test the interoperability between

EJBI � Volume 8 (2012), Issue 4 ©2012 EuroMISE s.r.o.



Egner, Moldoveanu, Goga � Using TTCN-3 for testing the interoperability ... en29

HL7v3 applications.

The solution is a testing framework based on the stan-
dardized TTCN-3 testing language and a TTCN-3 test
system. The approach is validated on a speci�c HL7v3
pro�le, i.e. Query for Existing Data (QED). QED is an
IHE pro�le [2] which allows systems to query data repos-
itories for clinical information on vital signs, problems,
medications, immunizations and diagnostic results.

2.1 TTCN-3 architecture

Testing and Test Control Notation version 3 (TTCN-
3) is a strongly-typed scripting language, used for de�n-
ing complex test speci�cations. TTCN-3 provides mecha-
nisms to describe test behaviors by unambiguously de�n-
ing the meaning of a test case pass or fail. TTCN-3 is
a standardized testing language that has been used for
more than 15 years in standardization and industry. It is
very �exible, portable and well suited for conformance and
interoperability testing. TTCN-3 test case speci�cations
do not depend on the platform, architecture or technolo-
gies used by the System Under Test (SUT). It provides a
built-in verdict mechanism that allows easy evaluation of
the testing results. Moreover, TTCN-3 has a re�ned tem-
plate matching mechanism that is very �exible and easy
to manage.

With TTCN-3 testing language testers can de�ne test
cases and the order in which they are executed. However,
to execute test cases, a TTCN-3 test system is needed.
The TTCN-3 test system can be thought of as a set of in-
teracting entities that implement speci�c test system func-
tionalities. Figure 1 depicts the general architecture of a
TTCN-3 test system, highlighting the main components
and the relationship between them.

Figure 1: General architecture of a TTCN-3 test system

The central layer, TTCN-3 Executable (TE) handles
the execution of TTCN-3 statements. TE depends on
the services provided by the other two layers. Test Man-
agement Control (TMC) includes three entities: External
Codecs (CD), Test Management (TM) and Component
Handling (CH). CD is responsible for encoding and de-
coding data, TM represents the interface with the Test
System User, and the CH is used for distributed execu-
tion of the test cases. Platform Adapter (PA) implements
TTCN-3 external functions and provides timing mecha-
nisms. SUT Adapter (SA) adapts the message/procedure
based communication between the TTCN-3 test system
and the SUT to the particular execution platform of the
test system. CD and SA will be subsequently referred to
as the Codec and the Adapter, respectively.

The majority of the TTCN-3 tools provide default im-
plementation for the TM and CH. This is not the case of
CD, SA or PA, since they cover aspects of the test system,
which are either test suite or SUT speci�c.

2.2 The TTCN-3 type system

The TTCN-3 type system extends the basic constructs
that usually have correspondents in programming lan-
guages with additional testing speci�c concepts, such as
built-in data matching, distributed test system, or con-
current execution of test components. The TTCN-3 type
system is very complex and includes also test verdicts,
test system components, and even direct support for time.
The core components of the TTCN-3 type system are the
TTCN-3 records, TTCN-3 enumerated types, and TTCN-
3 templates. These three components are used for storing
the information contained in HL7v3 messages in TTCN-3
speci�c format.

TTCN-3 records are constructs used for grouping re-
lated �elds in a single type. TTCN-3 records are used
to store data in a structured way. Field names within
a record must be unique and their types may be either
built-in or a user-de�ned. TTCN-3 records are arguably
the most used types of the TTCN-3 type system. TTCN-
3 enumerated types are ideal for representing types that
have small, �nite sets of values. They are used to model
types that take only a distinct named set of values, i.e.
enumerations. TTCN-3 enumerated types are often used
in HL7v3 to encode vocabularies. TTCN-3 templates
are used for de�ning information exchanged between the
test system and the SUT. While TTCN-3 types such as
records and enumerated types de�ne logical structures for
storing information, templates contain the actual infor-
mation. Subsequently, TTCN-3 records, TTCN-3 enu-
merated types and TTCN-3 templates will be referred as
records, enums and templates, respectively.

When creating test cases, testers de�ne two templates.
The �rst one represents the input that is passed to the
SUT, while the second one is the expected output. Dur-
ing test case execution, the TTCN-3 matching mechanism
veri�es if the expected output matches the one received
from the SUT. Based on the similarity between the two,

©2012 EuroMISE s.r.o. EJBI � Volume 8 (2012), Issue 4



en30 Egner, Moldoveanu, Goga � Using TTCN-3 for testing the interoperability ...

a verdict is set to the test case, generally indicating if
the test failed or passed. The input and expected output
templates are de�ned in TTCN-3 speci�c format. Using
these templates for testing SUTs require the existence of
modules for converting data from TTCN-3 to SUT spe-
ci�c formats. For this conversion, two of the TTCN-3 test
system components are used, namely the Codec and the
Adapter.

An important aspect of testing HL7v3 applications us-
ing TTCN-3 is that templates are di�cult to create. Their
hierarchical structure can span on many levels, usually
reaching more than twenty levels, in the case of QED mes-
sages, which makes manual de�nition and maintenance
cumbersome.

3 Testing HL7v3 applications

In order to validate the suitability of testing HL7v3
applications using TTCN-3, a case study was considered.
The SUT chosen is a mature application that uses the
IHE QED pro�le. During the development of this solu-
tion, several decisions have been made to facilitate the
communication with this SUT. However, as the paper de-
scribes further, the modularity of the TTCN-3 test sys-
tem allows adapting this solution to testing any HL7v3
based application. The SUT is deployed as a web service,
and the communication is performed through SOAP mes-
sages. The message �ow for testing the interoperability of
the HL7v3 based application is depicted in Figure 2.

Figure 2: Testing HL7v3-based applications - message �ow

When executing the test case, the template that de-
scribes the QED Query is sent to the Codec through the
TTCN-3 Control Interface (TCI). The message is trans-
lated into a Java object and passed on to the Adapter
through the TTCN-3 Runtime Interface (TRI). The Java
object is then serialized and embedded into a SOAP mes-
sage. After the connection between the Adapter and the
SUT is established, the SOAP message is passed on to the
SUT. If the query is valid, the web service replies with a
QED Response in SOAP format. The Adapter converts
the SOAP message into a Java object and forwards it to
the Codec, where it is decoded into a TTCN-3 template.
At this point, the TE evaluates the response from the
SUT, setting the verdict of the test case.

3.1 Implementation of the Codec

The Codec (Coder/Decoder) is an important TTCN-3
test system component. It is responsible for interfacing
the communication between TE and the Adapter. The
Codec has two basic functions: encoding and decoding.
TE interprets test cases and automatically converts tem-
plates representing QED Queries into Java objects, orga-
nized as structures. After the conversion, Java objects are
sent to the Codec, via the TCI interface. The TCI [5] is
composed of three interfaces that de�ne the interaction
between TE and TM, CD and CH.

In the encoding phase, the Codec translates the struc-
ture generated by TE into a Java HL7 object. In this way
the Codec assures that the Adapter receives a set of input
data that can easily be handled. The translation is per-
formed at runtime, using Java Re�ection. The structure is
parsed, each composing element being translated into the
corresponding HL7 Java object. These objects are then
encapsulated into a Java-based query request.

The Codec is also responsible for sending this query
request to the Adapter. TRI [6] de�nes the interaction
between TE and the Adapter. There is an important con-
straint determined by the usage of TRI. The Java interface
TriMessage has to be implemented by any class describ-
ing messages that are used in communication between the
TE and the Adapter. This constrains messages to be for-
matted as byte arrays. Since none of the JAXB generated
classes implement the Serializable interface, scripts had
to be created to modify each class and add �implements
Serializable� to their de�nition, so that requests can be
serialized and sent to the Adapter within a TriMessage.

In the decoding phase, the Codec receives a TriMes-
sage from the Adapter, containing the QED Response.
The Codec deserializes the message, converts it into a Java
structure and then forwards it to TE.

3.2 Implementation of the Adapter

The existence of the Adapter confers the TTCN-3 test
system much �exibility. The Adapter is the TTCN-3
test system component responsible for establishing con-
nections and handling communication with the SUT. The
same test suite can be executed on SUTs with di�erent
platforms just by replacing this component.

The Adapter enables communication between TE and
the SUT. It has two di�erent functionalities: encapsu-
lation of the query and extraction of the response from
SOAP messages. Simple Object Access Protocol (SOAP)
is a protocol speci�cation for exchanging structured infor-
mation. SOAP relies on XML as its message format.

In the encapsulation phase, the Adapter uses the
TriMessage it receives from the Codec as input. The
byte array containing the query is deserialized. Given the
transparency of the test case to the Adapter, the conver-
sion from Java to XML could only be done dynamically,
at runtime, through Java Re�ection. For this translation
Java API for XML Processing (JAXP) was used. JAXP

EJBI � Volume 8 (2012), Issue 4 ©2012 EuroMISE s.r.o.



Egner, Moldoveanu, Goga � Using TTCN-3 for testing the interoperability ... en31

[7] provides the capability of validating and parsing XML
documents. It o�ers several parsing interfaces from which
Document Object Model (DOM) parsing interface was
chosen. DOM [8] enables parsing of XML documents and
constructing complete in-memory representations of the
documents.

DOM documents have tree-type structure. They are
composed of a root element, which represents the XML
document, and several nodes, representing XML elements.
The translation of the Java message to XML was imple-
mented as following the next steps:

Step 1: a DOM document is created based on the
type of the query message;

Step 2: object's �elds list is obtained using Java Re-
�ection; each �eld represents a Java HL7 object;

Step 3: for each �eld a DOM element is generated
and added to the root element's children list;

Step 4: another DOM element containing the precon-
ditions is de�ned and added to the root's children list;

Step 5: the DOM document is serialized and the
XML-formatted message is ready to be forwarded to the
SUT.

DOM is used when extracting of the Java object from
the XML-formatted response received from the SUT, as
well. The transformation follows the next steps:

Step 1: the XML is deserialized into a DOM docu-
ment;

Step 2: the root element of the DOM is used to gen-
erate a Java object representing the QED Response;

Step 3: the document is parsed and each node is
translated into the corresponding HL7 Java object; these
objects are set as �elds of the Java-based QED Response
object;

Step 4: after the parsing is �nished, the Java QED
Response object is serialized to a byte array and sent to
the Codec via a TriMessage.

The Adapter is also responsible for handling the com-
munication with the SUT. The communication protocol
chosen for exchanging messages was SOAP. The web ser-
vice used WSDL [9] to de�ne the type of QED messages it
can handle, such as Query, Continue or Cancel. In order
for the communication to take place, the connection had
to be established, and for that a Java client was needed.
There are many tools that use the WSDL description to
generate stubs and clients. Java API for XML Web Ser-
vices � Reference Implementation (JAX-WS RI) was cho-
sen. JAX-WS RI [10] was introduced in Java SE 5 to
simplify the development and deployment of web service
clients and endpoints. Once the client was created, meth-
ods for connecting, sending and receiving QED messages
were available and the communication was possible.

3.3 Generating testing components

In terms of the TTCN-3 test system, when execut-
ing a test case, a template representing the QED Query
is sent to the SUT and if the template representing the
QED Response matches the expected response template,

the verdict is set to pass. As SUTs usually can't han-
dle TTCN-3 templates, they have to be converted to SUT
compliant formats. Java was chosen as common language,
for portability reasons and for the fact that it is the lan-
guage in which TTCN-3 test system components are de-
veloped. Thus, the template representing the QED Query
is encoded into a Java object that is passed to SUT, and
the response from the SUT is decoded into a template
storing QED Response.

The �rst attempt was to use a set of Java classes of-
fered by HL7, i.e. the Java SIG Project (jsig) [3]. The
main problem of jsig classes is the lack of a generic way
to generate Java HL7 objects based on the TTCN-3 tem-
plates. Jsig classes o�er no generic way of instantiating
objects and setting �eld values at runtime. This was a
major problem and another approach was needed.

The second approach was to use a set of XML Schemas
that describe the HL7 data types and the QED queries.
Java classes were generated based on the XSDs using
Java Architecture for XML Binding (JAXB) [4]. Be-
cause of the constraints imposed by communication be-
tween TTCN-3 test system components, the classes were
modi�ed through some scripts, so that all implemented
the Serializable interface.

The Java classes were used to generate the correspond-
ing TTCN-3 records and enumerated. The generating tool
that was developed and used has two components. The
�rst one is responsible for instantiating the classes and ex-
tracting the relevant information at runtime, using Java
Re�ection. The second one is a TTCN-3 code generator
which uses the information provided by the �rst compo-
nent to create two TTCN-3 modules, one for the records
and one for the enumerated.

After generating the records and enums, templates cor-
responding to HL7 data types could be de�ned. Finally,
we were able to create query and response templates used
in de�ning the test cases.

To summarize, when testing HL7v3 applications using
TTCN-3, the tester de�nes two templates: the one repre-
senting the query and the one representing the expected
response. When de�ning these templates, the TTCN-3
type system should contain types, i.e. records or enums,
that describe basic HL7v3 structures, in a TTCN-3 for-
mat. Since these types are not part of the TTCN-3 type
system, they had to be generated using the automated
tools described earlier. These aspects allow testers to de-
�ne test cases. However, when executing the test cases
against a SUT, the TTCN-3 test system is used. In or-
der to adapt the messages from the template format to
an SUT known format, two components have to be imple-
mented: the Codec and the Adapter.

4 Conclusions

There are many advantages which come with this ap-
proach, and probably the most important one is the tech-
nology used for testing. TTCN-3 is standardized, has been

©2012 EuroMISE s.r.o. EJBI � Volume 8 (2012), Issue 4



en32 Egner, Moldoveanu, Goga � Using TTCN-3 for testing the interoperability ...

validated as one of the best testing languages for proto-
col testing, it has a complex verdict assessment and its
modularity makes it very �exible.

The proposed solution does not directly depend on the
SUT, neither on its architecture, nor on the technology
it uses. The Adapter component is responsible for link-
ing the SUT with the test suite, which means that it is
the only component that needs to be replaced when test-
ing other systems. Another advantage is the automation.
Test suites can be developed to thoroughly test several
systems, without user intervention.

This approach has been validated on a mature system
that is using a HL7v3 pro�le: QED. However, the au-
thors highlight the adaptability of this solutions to other
pro�les, as well. Even though during the implementation
phase many generation tools had to be developed, these
tools can be used to other pro�les, as well, since they are
not pro�le-dependent.

This approach requires testers to be familiar to these
technologies and to TTCN-3 standard. On the other
hand, times and costs of the testing are reduced, since
the testing process is completely automatized, and can be
used with di�erent SUTs, as well.

References

[1] Colin Willcock, Thomas Deiÿ, Stephan Tobies, Stefan Keil,
Federico Engler, Stephan Schulz, "An introduction to TTCN-
3" John Wiley & Sons, April 2005.

[2] http://wiki.ihe.net/index.php?title=PCC_TF-1/-
QED#Appendix_E_-_WSDLs_for_QED (last access
on December 30 2012)

[3] http://aurora.regenstrief.org/javasig (last access on December
30 2012)

[4] http://java.sun.com/developer/technicalArticles/-
WebServices/jaxb/ (last access on December 30 2012)

[5] "Methods for Testing and Speci�cation (MTS); The Testing
and Test Control Notation version 3; Part 6: TTCN-3 Control
Interface (TCI)", ETSI ES 201 873-6 v3.2.1, February 2007.

[6] "Methods for Testing and Speci�cation (MTS); The Testing
and Test Control Notation version 3; Part 5: TTCN-3 Run-
time Interface (TRI)", ETSI ES 201 873-5 v3.2.1, February
2007.

[7] https://jaxp.dev.java.net/

[8] Peter-Paul Koch, "The Document Object Model: an Introduc-
tion", May 2001.

[9] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman,
Sanjiva Weerawarana, "Web Services Description Language
(WSDL) Version 2.0 Part1: Core Language", June 2007.

[10] https://jax-ws.dev.java.net/

EJBI � Volume 8 (2012), Issue 4 ©2012 EuroMISE s.r.o.


