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Stochastic Models for Low Level DNA Mixtures
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Abstract

Objectives: The increasing sensitivity of forensic analysis
methods allows to investigate less and less amount of bi-
ological samples. For samples of low quality or quantity,
there are stochastic events that require intensive statistical
analysis.
Methods: There are several models how to calculate the
probability of a given set of alleles. We have described
three of them and compared them to verify their accuracy.
Results: The two models proposed in [1] extend so far the
most widely used model by the possibility of dropout and
peak areas of individual alleles.

The first one is incorrect, while the second model highly
improves the possibility of DNA mixture analysis.
Conclusions: We have shown the inaccuracy of one of the
recently proposed models. We have added the possibility of
determining the dropout probability into the second model,
otherwise this model overestimates the probabilities calcu-
lated.
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1 Introduction

With the increasing sensitivity of methods used for
forensic DNA analysis, collection of forensic traces can be
accomplished from a very small amount of biological ma-
terial. Therefore, the increasing number of incomplete or
contaminated profiles and profiles originating from more
contributors are appearing. The samples containing only
a small amount of DNA (approximately up to 100 pg / ml)
are called low level samples and various stochastic effects
occur increasingly for these samples.

Some laboratories perform the analysis of samples
twice or more. Curran et al. [2] introduced the set the-
ory in order to enable the calculations to be made in these
cases. However, we do not attempt to explain their theory
in this paper.

The result of laboratory processing of DNA samples is
electropherogram (epg), which displays the alleles present
at particular loci and peak heights measured in relative
fluorescence units (RFU). Currently the most common
laboratory sets process sixteen loci.

Two main approaches to DNA mixture interpretation
are currently discussed in forensic practice. The Random

Man Not Excluded method (RMNE) calculates the pro-
bability of observing the DNA profile needed for evidence,
given that the DNA profile comes from a random indivi-
dual, unrelated to the suspect. In other words, it is the
probability that the DNA profile from a random person
is the same as the evidence DNA profile, and that this
person therefore, due to the evidence, cannot be excluded
from suspicion.

The Likelihood Ratio approach (LR) compares the
probabilities of observing the evidence under two rival
hypotheses: typically the prosecution hypothesis Hp, the
probability that the suspect is one of the contributors to
the mixture, and the defense hypothesis Hd, the probabi-
lity that the suspect does not contribute to the mixture.

The advantage of the LR framework is that dropout
can be assessed probabilistically and it is the only way
to provide a meaningful calculation based on the probabi-
lity of the evidence under Hp and Hd. A likelihood ratio
approach is therefore preferred [3]. For a more detailed
comparison of both methods, see [4].

If the allele which is present in the sample is not
displayed on the epg we call such an event an (allelic)
dropout. If no allele is displayed at the locus, we talk
about locus dropout.
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If n persons is assumed to contribute to the mixture,
maximum of 2n alleles can appear at the locus. However,
some alleles may be represented several times, others may
be missing due to the dropout. The observed mixed profile
is therefore usually made up of fewer alleles. Under such
conditions, there are more possibilities how to reconstruct
individual DNA profiles from observed mixed profile.

Kelly et al. [1] suggested two stochastic models to
compute the probability of observing the mixed profile.
They compare them with most commonly used model,
designated there as the unconstrained combinatorial (UC)
method. In this article, the comparison of the three mo-
dels will be discussed.

Although this theory is easily extended to multiple
loci, in the present article, we consider only one locus
in the profile and some realities are omitted for simplifica-
tion, e.g. contamination and drop-in possibility or popula-
tion structure. The number of contributors to the mixture
will be assumed to be known.

2 Methods

From the epg, not only alleles present may be found
out but also the peak heights. This information can help
us to distinguish e.g. component belonging to the do-
minant contributor, but even if it is not possible to di-
vide precisely individual components of the mixture, peak
heights can inform us about the presence of multiple copies
of several alleles. However, the decision on whether the
allele is present in multiple copies strongly depends on the
assessment of forensic expert and his experience.

The calculation of a LR may proceed by either a bi-
nary, a semi-continuous, or a fully continuous method.
The binary and semi-continuous methods treat alleles as
present or absent, moreover the semi-continuous method
assigns a probability to the events of dropout or non-
dropout. Fully continuous method deals with the pro-
bability of drop-out and other stochastic events based on
the heights of the peaks visualised at a locus. Only binary
methods are compared here.

Software processing epgs usually shows two thresholds
for more simple interpretation. If the signal is below the
limit of detection (LOD), we consider it as a noise. The
detection limit is usually determined as 25 or 50 RFU
or is calculated as the average noise signal plus three its
standard deviations.

The stochastic threshold T is a value above which the
dropout is excluded. In case that there is only one signal
above the stochastic threshold, it may be assumed that it
is a homozygous profile [5]. T is usually in the range of
150-300 RFU or may be calculated as the average noise
signal plus ten its standard deviations.

Now let us consider two examples with the limit of
detection LOD = 50 RFU and the stochastic threshold
T = 300 RFU. The observed profile will be denoted by X
and the set of all occurring alleles (allelic vector) will be
denoted by A.

Example 1

The alleles 13, 14 and 15 with values of 180, 195, and
212 RFU, respectively, are observed at the locus. The
mixture is assumed to originate from two contributors.
Thus it is the profile X = [13, 14, 15] for which the peak
heights on the epg are approximately the same for all alle-
les. Under these assumptions, one allele is missing in the
allelic vector A - either there was a dropout, or some of
the contributors is homozygote, or both contributors have
an allele of the same type.

Example 2

The alleles 13, 14 and 15 with values of 150, 470 and
420 RFU, respectively, are observed at the locus. From
the analysis of other loci in the same sample, the mixture
is assumed to originate from three contributors. Thus it is
the profile X = [13, 14, 15] again but now there are three
missing alleles to complete the allelic vector. The observed
alleles also have quite different peak heights which encour-
age to the inclusion of multiple copies of some alleles into
the allelic vector, but for now we let this opportunity un-
used. We will return to it later in the section 3.

Now we describe proposed models and show their ap-
plication to both the examples mentioned above.

2.1 UC Model

The unconstrained combinatorial method does not al-
low for possibility of dropout nor include peak heights to
the calculation. The allelic vector can be completed only
by copies of alleles observed.

Example 1 :

P(X = [13, 14, 15]) =

= P
(
A ∈

{
[132, 14, 15], [13, 142, 15], [13, 14, 152]

})
=

=
4!

2!1!1!
p213p14p15 +

4!

1!2!1!
p13p

2
14p15 +

4!

1!1!2!
p13p14p

2
15=

= 12p13p14p15(p13 + p14 + p15). (1)

Example 2 :

P(X = [13, 14, 15]) =

= P
(
A ∈

{
[134, 14, 15], [133, 142, 15], [133, 14, 152],

[132, 143, 15], [132, 142, 152], [132, 14, 153], [13, 144, 15],

[13, 143, 152], [13, 142, 153], [13, 14, 154]
})

=

=
6!

4!1!1!
p413p14p15 +

6!

3!2!1!
p313p

2
14p15 +

6!

3!1!2!
p313p14p

2
15 +

+
6!

2!3!1!
p213p

3
14p15 +

6!

2!2!2!
p213p

2
14p

2
15 +

6!

2!1!3!
p213p14p

3
15 +
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+
6!

1!4!1!
p13p

4
14p15 +

6!

1!3!2!
p13p

3
14p

2
15 +

6!

1!2!3!
p13p

2
14p

3
15 +

+
6!

1!1!4!
p13p14p

4
15 =

= 30p13p14p15
(
p313 + 2p213p14 + 2p213p15 + 2p13p

2
14+

+ 3p13p14p15 + 2p13p
2
15 + p314 + 2p214p15 +

+ 2p14p
2
15 + p315

)
. (2)

2.2 F and Q Models

F and Q models were suggested by Kelly et al. [1] as
an extension of UC model. Compared to this model, they
allow to calculate with the possibility of dropout and to
use the information about peak heights.

In F model, any allele completing the observed profile
to the allelic vector is denoted by F . For example, under
conditions of Example 1 Kelly et al. state

P(X=[13, 14, 15]) = P(A = [13, 14, 15, F ]) =

=
4!

1!1!1!1!
p13p14p15 = 24p13p14p15.(3)

However, F model is incorrect due to the non-
differentiation between observed and unobserved alleles.
If the allele designated as F is of the same type as an allele
already observed, the number of possible combinations is
less than if we assume that all alleles are different. Thus,
F model overestimates computed probabilities. In the case
of Example 2, we get 120p13p14p15 which gives the sense-
less probability 1.875 for values p13 = p14 = p15 = 0.25.
Therefore, we will continue to consider only model Q.

In Q model, any allele which does not appear on the
epg (e.g. due to the dropout) is denoted by Q. The pro-
bability of allele marked Q is equal to one minus the sum
of the probabilities of observed alleles.

Example 1 :

P(X = [13, 14, 15]) = P
(
A ∈

{
[132, 14, 15],

[13, 142, 15], [13, 14, 152], [13, 14, 15, Q]
})

=

=
4!

2!1!1!
p213p14p15 +

4!

1!2!1!
p13p

2
14p15 +

4!

1!1!2!
p13p14p

2
15+

+
4!

1!1!1!1!
p13p14p15(1− p13 − p14 − p15) =

= 12p13p14p15(2− p13 − p14 − p15). (4)

Example 2 :

P(X = [13, 14, 15]) =

= P
(
A ∈

{
[134, 14, 15], [133, 142, 15], [133, 14, 152],

[133, 14, 15, Q], [132, 143, 15], [132, 14, 153],

[132, 14, 15, Q2], [132, 142, 152], [132, 142, 15, Q],

[132, 14, 152, Q], [13, 144, 15], [13, 143, 152],

[13, 143, 15, Q], [13, 142, 153], [13, 142, 152, Q],

[13, 142, 15, Q2], [13, 14, 154], [13, 14, 153, Q],

[13, 14, 152, Q2], [13, 14, 15, Q3]
})

= . . . =

= 30p13p14p15 (2− p13 − p14 − p15)×
×
(
p213 + p214 + p215 + p13p14 + p13p15+

+ p14p15 − 2p13 − 2p14 − 2p15) . (5)

3 Inclusion of Peak Heights

As can be seen in equation (5), the number of possible
allelic vectors and the complexity of their quantification
increases very markedly with a higher number of unknown
alleles. In fact, the possibility of the peak height inclusion
was not employed to the calculation.

Since the peaks of alleles 14 and 15 (470 and 420
RFU) in Example 2 are above the stochastic threshold
(300 RFU) and are significantly higher than the third
observed value (150 RFU), alleles 14 and 15 can be as-
sumed to be present in two copies. Taking the peak
height into account, observed profile X may be adjusted
to X∗ = [13, 142, 152]. Quantification is thus considerably
simplified:

P(X∗ = [13, 142, 152]) =

= P
(
A ∈

{
[132, 142, 152], [13, 143, 152], [13, 142, 153],

[13, 142, 152, Q]
})

=
6!

2!2!2!
p213p

2
14p

2
15 +

+
6!

1!3!2!
p13p

3
14p

2
15 +

6!

1!2!3!
p13p

2
14p

3
15+

+
6!

1!2!2!1!
p13p

2
14p

2
15(1− p13 − p14 − p15) =

= 30p13p
2
14p

2
15(6− 3p13 − 4p14 − 4p15). (6)

The model Q is in this part an appropriate extension
of the UC model.

4 Probability of Dropout

As was mentioned, the model Q enables to calculate
also with possibility of dropout. Due to the small amount
of DNA, allelic dropout of one or more alleles is very
common in low level samples. Ignoring the possibility of
dropout tends to the disfavour of defense [6] so there are
some methods to inform about probabilities of dropout
([7], [8]).
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However, the model Q includes dropout to the calcula-
tion without considering of its probability. We think that
this approach is as incorrect as the exclusion of dropout
itself and may results in a strong overestimation of calcu-
lated probabilities.

Let us suppose that the dropout probability is deter-
mined as d ∈ (0, 1). If the probability of allelic vector
is calculated considering allelic dropout, this probability
should be multiplied by d. For example, the fourth sum-
mand in equation (6) must be multiplied by a value of d:

P(X∗ = [13, 142, 152]) =
6!

2!2!2!
p213p

2
14p

2
15 +

+
6!

1!3!2!
p13p

3
14p

2
15 +

6!

1!2!3!
p13p

2
14p

3
15+

+ d
6!

1!2!2!1!
p13p

2
14p

2
15(1− p13 − p14 − p15) =

= 30p13p
2
14p

2
15 ×

× [6d+ 3p13 (1− 2d) + 2 (p14 + p15) (1− 3d)] .(7)

The original formula may be obtained by putting the
value of d = 1 which means that the dropout occurred
with the probability equal to 1. However, it would ex-
clude the possibility that the allele is a copy of some of
the observed alleles.

Figure 1: Part of the mixed profile.

If the possibility of two dropouts is assumed, the pa-
rameter d must also be considered in the square; if three
dropouts are assumed, third power of d is necessary etc.
In equation (5), the parameter d should appear in the first,
second, and third power. In practice, summands with se-
cond and third power have usually an order of magnitude
too small to affect the overall probability and could be
neglected. See [9] for more complex discussion.

5 Comparison of Models

Figure 1 shows epg of DNA mixture for which three
persons are assumed to be contributors. At locus
D19S433, four peaks are displayed. Table 1 shows peak
heights and allele frequencies in Czech population [10].
There are two suspects with alleles 14, 15 and 15, 16. Both
calculations are performed independently.

Table 1: Locus D19S433: present alleles and their frequencies
in the Czech population.

Allele Value (RFU) Frequency
11 55 0.0035
14 610 0.3617
15 1385 0.172
16 391 0.0408

The likelihood ratio is equal to the proportion of pro-
babilities of evidence under prosecution and defense hy-
potheses:

LR =
P (E|Hp)

P (E|Hd)
,

where Hp means "suspect and two unknown persons con-
tributed to the mixture" and Hd means "three unknown
persons contributed to the mixture".

In the following examples we calculate LRs first for the
suspect’s profile S1 = [14, 15]. Since peak of allele 11 is
small, it will be considered later.

5.1 UC Model

Let us evaluate UC model with crime scene profile
X = [14, 15, 16] and suspect’s profile S1 = [14, 15].

Hypothesis Hp assumes two persons having together
at least one allele 16 and no other than 14, 15 and 16.

P (E|Hp) = P (X = [14, 15, 16]|S1 = [14, 15]) =

= 12p214p15p16 + 12p14p
2
15p16 + 12p14p15p

2
16 + 6p214p

2
16 +

+ 6p215p
2
16 + 4p14p

3
16 + 4p15p

3
16 + 4p314p16 +

+ 4p315p16 + p416 = 0.0278018

Hypothesis Hd assumes three persons having together
alleles 14, 15 and 16 only.

P (E|Hd) = P (X = [14, 15, 16]) =

= 30p14p15p16
(
p314 + 2p214p15 + 2p214p16 + 2p14p

2
15+

+ 3p14p15p16 + 2p14p
2
16 + p315 + 2p215p16 +

+ 2p15p
2
16 + p316

)
= 0.01076452

Thus LR for UC model is

LR1 =
P (E|Hp)

P (E|Hd)
= 2.582726. (8)

5.2 Original Q Model

If Q model is considered, it may be assumed from
analysis of peak heights that allele 15 occurs twice at
least. Then the crime scene profile is X = [14, 152, 16].
The possibility of dropout may be included and let put
pQ = 1− p14 − p15 − p16.
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Hypothesis Hp assumes two persons having together
alleles 15 and 16.

P (E|Hp) = P
(
X = [14, 152, 16]|S1 = [14, 15]

)
=

= p15p16
(
4p216 + 6p15p16 + 12p14p16 + 12p16pQ+

+ 4p215 + 12p214 + 12p14p15 + 12p15pQ +

+ 12p2Q + 24p14pQ
)
= 0.0674637

Hypothesis Hd assumes three persons with alleles 14,
15, 15 a 16.

P (E|Hd) = P
(
X = [14, 152, 16]

)
=

= 30p14p
2
15p16

(
2p214 + 2p14p15 + 3p14p16 + 6p14pQ+

+ p215 + 2p15p16 + 4p15pQ + 2p216 +

+ 6p16pQ + 6p2Q
)
= 0.0377721

LR for original Q model is

LR2 =
P (E|Hp)

P (E|Hd)
= 1.786072. (9)

5.3 Modified Q Model

The process from section 4 is applied. The crime scene
profile is X = [14, 152, 16] again and dropout probability
is d = 0.45.

Hypotheses Hp and Hd are the same as in the original
Q model, the only change is inclusion of parameter d.

P (E|Hp) = P
(
X = [14, 152, 16]|S1 = [14, 15]

)
=

= p15p16
(
4p216 + 6p15p16 + 12p14p16 + 12dp16pQ+

+ 4p215 + 12p214 + 12p14p15 + 12dp15pQ +

+ 12d2p2Q + 24dp14pQ
)
= 0.03685446

P (E|Hd) = P
(
X = [14, 152, 16]

)
=

= 30p14p
2
15p16

(
2p214 + 2p14p15 + 3p14p16 + 6dp14pQ+

+ p215 + 2p15p16 + 4dp15pQ + 2p216 +

+ 6dp16pQ + 6d2p2Q
)
= 0.01691434

LR for modified Q model is

LR3 =
P (E|Hp)

P (E|Hd)
= 2.178889. (10)

5.4 Modified Q Model with Allele 11

Now, allele 11 is also included to the calculation us-
ing modified Q model; it means crime scene profile X =
[11, 14, 152, 16]. Dropout probability is d = 0.45 again.

Hypothesis Hp assumes two persons with alleles 11, 15
and 16.

P (E|Hp) = P
(
X = [11, 14, 152, 16]|S1 = [14, 15]

)
=

= 12p11p15p16 (p11 + 2p14 + p15 + p16 + 2dpQ) =

= 0.0003889084

Hypothesis Hd assumes three persons with alleles 11,
14, 15, 15 and 16.

P (E|Hd) = P
(
X = [11, 14, 152, 16]

)
=

= 180p11p14p
2
15p16 (p11 + p14 + p15 + p16 + 2dpQ) =

= 0.0002634395

LR for modified Q model with allele 11 is

LR4 =
P (E|Hp)

P (E|Hd)
= 1.476272. (11)

5.5 Suspect S2

Calculations for the second suspect S2 = [15, 16] are
similar. P (E|Hd) are the same as for first suspect but
P (E|Hp) and hence LRs are much higher:

• LR = 9.929154 for UC model.

• LR = 10.88783 for original Q model.

• LR = 11.58568 for modified Q model.

• LR = 9.904598 for modified Q model with allele 11.

6 Conclusion

Suppose the number of contributors is known and let
us briefly summarize the possible statistical processing of
epg.

If the number of observed alleles is twice the number
of contributors, then all necessary alleles are known and
the probability of the profile may be directly calculated.
If any alleles are missing in the allelic vector, the proce-
dure from the section 3 is used. The stochastic threshold
T is set and the alleles whose peak is above threshold are
counted twice. Thereby the set of present alleles is deter-
mined more precisely.

If the allelic vector is still incomplete (i.e. the number
of alleles 6= 2n), all the possibilities of adding any number
of alleles present may be calculated. If the possibility of
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dropout is also assumed, its probability is predicted and
the modified Q model is used as was shown in section 4.

As shown in section 5, substantially different results
can be obtained according to the used model and investi-
gated profiles. Generally speaking, the rare alleles present
in the profile of the suspect, the higher the likelihood ratio
and thus the posterior probability of guilt of the suspect.

When comparing UC and Q model, higher LR was
received first and then smaller. On the other hand, it ap-
pears that adding of parameter d increases LR because it
reduces the denominator more than the numerator.
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