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Abstract

Background: Survival analysis is a collection of statistical
methods for inference on time-to-event data. If several
causes of failure occur and the occurrence of one event
precludes the occurrence of the other events, the situation
is known as competing risks. Since the competing risks
violate the fundamental assumption of independent
censoring, specific methods for inference are needed.
Objectives: The aim of this paper is to recall the compet-
ing risks model and statistical methods for nonparametric
analysis, and to illustrate the competing risks methods on
a real data set of 118 Chronic Myeloid Leukemia (CML)
patients from the Clinic of Haemato-oncology of the
University Hospital in Olomouc.
Methods: The overall survival probability and risk factors
of two types of failure (death due to CML and death
from other causes) are assessed. Predicted probabilities
of the two types of failure with stratification based on
the risk factors (Sokal score, haematological response to
treatment) are shown.
Results: Outcomes of the specific methods designed
for the competing risks analysis are compared with the
outcomes of the standard survival analysis methods. The
effect of the Sokal score classification is found ambiguous.
While the score should identify high- and low-risk CML
patients, it seems to be predictive only for the failure due
to other causes than CML.
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Conclusions: The importance of careful censoring and the
need of using proper methods of analyses of competing
risks data is shown. The use of the Sokal score for clas-
sification of the CML patients should be considered more
thoroughly.
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1 Introduction

Methods of survival analysis have become widely used
in medical research in the past few decades. Standard sur-
vival data (also called time-to-event data) arise in studies
where time from some origin to an end-point is measured.
The end-point is defined by occurrence of a certain event

of interest. The time until the specified event occurs can
be characterized by several functions. The most widely
used are the survival function, representing the proba-
bility of an individual surviving up to time t (i.e. the
probability that the event has not occurred before t), and
the hazard function, representing the rate of occurrence
of the event at a given time. Under the assumption of in-
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dependent censoring, these functions are estimated by the
Kaplan-Meier estimator of the survival function and the
Nelson-Aalen estimator of the hazard function (for more
information, see e.g. [1] or [2]).

In some cases, several causes of failure are possible
but the occurrence of one event precludes the occurrence
of the other events (e.g. when failures are different causes
of death, only the first one can be observed). This situa-
tion is known as competing risks. Often, only one event
is chosen for analysis, the competing causes of failure are
ignored and treated as right-censored observations, and
classical survival methods are used for inference [3]. How-
ever, this approach leads to a bias in the Kaplan-Meier
estimate [4]. The bias is caused by violating one of the fun-
damental assumptions underlying the Kaplan-Meier esti-
mator – the assumption of independence of distribution of
the time to the event and the censoring distribution. Fur-
thermore, independence between distinct causes of failure
cannot be verified on the basis of the observed competing
risks data [5]. Specific methods are thus needed for the es-
timation of survival probabilities. The Cox proportional
hazards model may be used for regression analysis, but
the interpretation of the results becomes different [4].

This paper presents the competing risks model and
statistical methods for nonparametric analysis. The meth-
ods are then illustrated on real Chronic Myeloid Leukemia
(CML) data from the Clinic of Haemato-oncology of the
University Hospital in Olomouc, Czech Republic. All sta-
tistical methods are implemented with the R software,
using the survival, cmprsk and mstate packages [6].

2 Methods

Competing risks are used to model a situation where
subjects under investigation are exposed to several causes
of failure. If failures represent different causes of death,
only the first event to occur is observed. In other settings,
second and subsequent failures may be observable, but not
of interest. The violation of the assumption of indepen-
dent censoring, leading to a biased Kaplan-Meier estima-
tor, is an important issue in competing risks models. If
the competing event time distributions were independent
of the distribution of time to the event of interest, this
would imply that at each time the risk of this event is the
same for subjects that have not yet failed and are still un-
der follow-up as for subjects that have experienced a com-
peting event by that time [4]. However, a subject that is
censored due to failure from a competing risk will certainly
not experience the event of interest. Since subjects that
will never fail (by the failure of interest) are treated as if
they could fail (they are censored), the standard Kaplan-
Meier estimator overestimates the probability of failure
and underestimates the corresponding survival probabil-
ity [4], [7].

The competing risks data are represented by the fail-
ure time T, the failure cause D and a vector of covariates

Z (T is assumed to be a continuous and positive random
variable, D takes values in the finite set {1, . . . ,m}). For-
mer approach to competing risks used multivariate failure
time models. In such models each subject was assumed to
have a potential failure time for each type of event. The
earliest event was actually observed and the others were
latent. This approach focused on the joint distribution
of the times T1, . . . , Tm of the m different failure types,
described by the joint survival function

S(t1, . . . , tm) = P (T1 > t1, . . . , Tm > tm).

The marginal hazard function

hj(t) = lim
∆t→0+

P (t ≤ Tj < t+ ∆t|Tj ≥ t)
∆t

is defined by the marginal survival

Sj(t) = P (Tj > t) = S(0, . . . , 0, t, 0, . . . , 0).

However, without additional assumptions, neither the
joint survival function is identifiable from the observed
data, nor are the marginal distributions [2], [8], [5]. This
“latent failure time” approach has thus little practical use.

A recent concept in competing risks models is the
cause-specific hazard function and the cumulative inci-
dence function. These two functions completely specify
the joint distribution of (T,D), the failure time and the
failure cause [9]. The cause-specific hazard function for
the j−th cause is defined by

λj(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t,D = j|T ≥ t)
∆t

,

for j = 1, . . . ,m. It represents the hazard of failing from
cause j in the presence of the competing events. The cu-
mulative cause-specific hazard is then defined by

Λj(t) =

∫ t

0

λj(u)du.

A function Sj(t) = exp(−Λj(t)) should not be interpreted
as a marginal survival function unless the competing event
time distributions and the censoring distribution are inde-
pendent (in case of independent censoring, the marginal
distribution models the situation when competing events
do not occur) [9]. The total hazard λ(t) and the overall
survival function S(t) are defined in terms of the cause-
specific hazards:

λ(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

=
m∑
j=1

λj(t),

S(t) = P (T > t) = exp

(
−
∫ t

0

λ(u)du

)
=

= exp

− m∑
j=1

∫ t

0

λj(u)du

 =
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= exp

− m∑
j=1

Λj(t)

 .

This overall survival function does have an interpretation:
It is the probability of not having failed from any cause
at time t [3].

The cumulative incidence function of cause j, Ij(t), is
defined by

Ij(t) = P (T ≤ t,D = j), j = 1, . . . ,m,

and represents the probability of a subject failing due to
cause j in the presence of all the competing risks. It can
be expressed in terms of the cause-specific hazard and the
overall survival function as

Ij(t) =

∫ t

0

λj(u)S(u)du, j = 1, . . . ,m. (1)

This function is sometimes called "crude cumulative inci-
dence function" or "subdistribution function". It is not a
proper distribution function because the cumulative prob-
ability to fail from cause j remains less than unity, as
Ij(∞) = P (D = j) [1]. The standard Kaplan-Meier esti-
mator of the probability of failing due to cause j before
or at time t satisfies

1− Sj(t) =

∫ t

0

λj(u)Sj(u)du, (2)

which is similar to the expression of cumulative incidence
function Ij(t). Equations (1) and (2) differ by replacing
S(t) by Sj(t). Since

S(t) ≤ Sj(t),

then
Ij(t) ≤ 1− Sj(t),

with equality at t if there is no competition, i.e. if

m∑
k=1,k 6=j

Λk(t) = 0.

This shows the bias of the Kaplan-Meier estimator if it is
used to estimate Ij(t) [4].

The cumulative incidence function can be estimated
using the Kaplan-Meier methodology restricted to specific
failures for each cause: Let 0 < t1 < t2 < · · · < tn be the
ordered distinct times at which failures of any cause occur.
Let djk denote the number of patients failing from cause
j at tk, and let dk =

∑m
j=1 djk denote the total number of

failures (from any cause) at tk. Let nk be the number of
patients at risk (i.e. patients still in follow-up who have
not failed from any cause) at time tk. Then the cumulative
incidence function of cause j at time t is estimated by

Îj(t) =
∑
k:tk≤t

λ̂j(tk)Ŝ(tk−1),

where the discretized version of the cause-specific hazard
λj(tk) = P (T = tk, D = j|T > tk−1) is estimated by

λ̂j(tk) =
djk
nk

and

Ŝ(t) =
∏
k:tk≤t

1−
m∑
j=1

λ̂j(tk)

 .

More detailed derivation of this estimator of Ij(t) can be
found in [1] and [4].

In addition to estimating the cumulative incidence
functions of the events, it is often of interest to compare
the cause-specific cumulative incidence functions among
different groups of patients. In standard survival analy-
sis this is done using the nonparametric tests comparing
curves generated with the Kaplan-Meier method (e.g. the
log-rank test, the Gehan-Wilcoxon test, etc.). In the pre-
sence of competing risks, however, these tests are inappro-
priate. Instead, Gray [10] proposed a class of generalized
linear rank statistics for testing equality of the cumula-
tive incidence functions. The tests are based on compar-
ing weighted averages of the hazards of the cumulative
incidence function for the failure type of interest.

Consider now a regression model for the competing
risks. As in any other regression analysis, it is used to
identify potential prognostic factors for a particular fail-
ure in the presence of competing risks, or to assess a prog-
nostic factor of interest after adjusting for other poten-
tial risk factors in the model. First, consider a regression
model for the cause-specific hazard functions. Since the
cause-specific hazard functions are identifiable, regression
on these functions is possible and a competing risks ana-
logue of the Cox proportional hazards model becomes a
logical choice [2]. It models the cause-specific hazard of
cause j for a subject with a covariate vector Z by

λj(t,Z) = λ0j(t) exp(βTj Z),

where λ0j(t) is the baseline cause-specific hazard of cause
j and βj is a vector of the regression coefficients related
to cause j. Both the baseline hazards and the regression
coefficients are permitted to vary arbitrarily over the j
failure types. Again, let tj1 < tj2 < · · · < tjkj denote the
kj times of type j failures, j = 1, . . . ,m, and let Zji be
the covariates for the individual that fails at tji. Partial
likelihood is constructed with conditioning at each failure
time: (1) on the previous history of failures and censoring,
(2) that at time tji, a single type j failure occurs [4]. The
partial likelihood function then reads [2]:

L(β1, . . . , βm) =
m∏
j=1

kj∏
i=1

exp
(
βTj Zji(tji)

)∑
γ∈R(tji)

exp
(
βTj Zγ(tji)

) ,
where R(tji) is the risk set at time tji. Estimation and
comparison of the regression coefficients βj can be con-

EJBI – Volume 7 (2011), Issue 1 c©2011 EuroMISE s.r.o.



Fürstová, Valenta – Statistical Analysis of Competing Risks en5

structed by applying asymptotic likelihood techniques in-
dividually to the m factors.

Unfortunately, the cause-specific hazard function does
not have a direct interpretation in terms of survival proba-
bilities for the particular failure type. Moreover, the effect
of a covariate on the cause-specific hazard function may be
very different from the effect of the covariate on the cor-
responding cumulative incidence function [10]. Therefore,
Fine and Gray [11] proposed a method for direct regres-
sion modeling on the cumulative incidence functions for
the competing risks data. The Fine and Gray model is
a semiparametric proportional hazards model using the
partial likelihood principle and weighting techniques. It
uses a log(− log) transformation such that it is reasonable
to assume a constant difference between the cumulative
incidence functions independent of the time point t. For
events of type j, the model reads

gj (Ij(t,Z)) = h0j(t) + βTj Z, j = 1, . . . ,m,

where gj is some known increasing function, h0j(t) is an
invertible and monotone increasing function, Z is a co-
variate vector and βj is a vector of regression coefficients
related to cause j. The procedure is based on the trans-
formation

g = log (− log(1− u))

corresponding to the proportional hazards model, and it
utilizes the subdistribution hazards (hazards related to
the cumulative incidence functions) constructed by Gray
in [10]. After the transformation, the model reads

Ij(t,Z) = 1− exp
(
− exp(βTj Z)h0j(t)

)
,

which allows to assess the effects of the covariates on the
cumulative incidence function directly. The partial likeli-
hood constructed by Fine and Gray differs from the tra-
ditional cause-specific hazard analysis: in the Fine-Gray
model, the risk set for type j events is constructed so that
subjects having already experienced events other than
type j are always at future risk of a type j event, while
in the traditional model the occurrence of an event other
than type j removes an individual from future risk sets
[11]. A comprehensive discussion may be found in [11]
and [12].

3 Data

For illustration of the competing-risks techniques, data
from the Clinic of Haemato-oncology of the University
Hospital in Olomouc are used. The data contain 118 pa-
tients suffering from Chronic Myeloid Leukemia (CML).
CML is a cancer of the white blood cells. It is a form
of leukemia characterized by the increased and unregu-
lated growth of predominantly myeloid cells in the bone
marrow and the accumulation of these cells in the blood.
The median age at time of the diagnosis of the disease is
53 years [in 1999], but all age groups, including children,

are affected [13]. The natural history of CML is progres-
sion from a benign chronic phase to a blast crisis within
three to five years [14]. Blast crisis is the final phase in
the evolution of CML, and behaves like an acute leukemia,
with rapid progression and short survival. The blast crisis
is often preceded by an accelerated phase, which signals
that the disease is progressing and transformation to blast
crisis is imminent. Drug treatment can usually stop this
progression if started early [13], [14], [15]. In the Czech
Republic, there are about 200 newly diagnosed CML pa-
tients per year [16].

All 118 patients in the data set were treated in the Olo-
mouc University Hospital in the years 1989–2010. The
last admissible date of diagnosis for the analysis was in
2006 in order to have sufficient follow-up time for all the
patients. There is one limitation of the data concerning
its consistency: the treatment protocol was changed in
2001 because a new drug – Glivec – had been approved
for treatment of the chronic phase of CML. Until 2001,
patients were treated by Interferon.

For first-line treatment, Interferon was used for all pa-
tients in the Olomouc data set (even those diagnosed after
2001) and most of the patients surviving after 2001 were
then treated by Glivec. Out of the 118 patients, 67 are
males (57%). The age of the patients at the date of diag-
nosis ranges from 18 to 71, with the mean of 48 years and
median of 50 years. At the date of diagnosis, the Sokal
score [17] is evaluated for patients with CML. It identifies
low- and high-risk patients according to their age, spleen
size and blood cell count.

The high risk group (Sokal score 3) contains 21% of
the Olomouc patients (n = 25), the low risk group (Sokal
score 1) covers 39% (n = 46). All other patients were clas-
sified with the Sokal score 2. Complete blood count was
recorded at the date of diagnosis and haematological re-
sponse to the treatment was assessed. Overall, 73 patients
(62%) achieved complete haematological response (CHR)
to the Interferon treatment. The CHR is assessed by im-
provement of all parameters of the blood cell count of a
patient. Median time of CHR is 3 months after the Inter-
feron treatment. Although other types of failure could be
considered as well (e.g. progression-free survival, after-
treatment survival, etc.), the focus of this paper is the
overall survival with initial point being the date of diag-
nosis of CML and terminal point being death.

The events of interest (competing risks) are two types
of failure: death due to CML (includes accelerating dis-
ease, progressive disease and blast crisis), and death from
other causes (different types of cancer, graft-versus-host
disease after stem cell transplantation, suicide, other).
By January 2010, 39 patients (33%) have died, 23 pa-
tients died due to CML (20%) and 16 due to other causes
(14%). Seventy nine patients (67%) did not experience
any of these events and were censored in January 2010.
All the competing risks estimations are made in terms of
the overall survival, i.e. time from the diagnosis of CML
to death is considered.
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4 Results and Discussion

Figure 1 shows the estimates of the probabilities of
"CML-related death" and "death from other causes" for
all patients. The CML curves are represented as sur-
vival curves, while the other event curves are represented
as probability distribution functions (one minus survival)
for greater clarity. Estimates based on the Kaplan-Meier
method are grey, whereas the estimates of the cumulative
incidence functions are black.

Figure 1: Estimates of probabilities of CML-related death
(represented as survival curves) and death from other causes
(represented as probability distribution functions), based on
Kaplan-Meier (grey) and on cumulative incidence functions
(black).

For this data, the two estimates are relatively close
to each other, however, the difference between the curves
is obvious. The estimates of probability of failure based
on Kaplan-Meier after 10 years (120 months) of follow-
up are P = 0.24 for CML-related event resp. P = 0.19
for other type of event, while cumulative incidence esti-
mates are P = 0.22 and P = 0.16 for CML and other
type of event, respectively. This illustrates the formerly
mentioned claim that the Kaplan-Meier estimator overes-
timates the probability of failure and underestimates the
corresponding survival probability.

Table 1: Basic characteristics of the continuous covariate vari-
ables: age, leukocyte count and haemoglobin level at the date
of diagnosis.

Mean Median Min Max
Age (years) 48 50 18 71
Leu (×109/l) 131 86 2 777
Hgb (g/l) 125 126 70 161

Figure 2 shows the estimated cumulative incidence
curves again, displayed in a different way – they are
stacked. The bottom curve represents the estimate of
the cumulative incidence function of CML (ÎCML(t)), the

top curve represents the sum of estimates of the cumula-
tive incidence functions of CML and other types of death
(ÎCML(t) + Îother(t)). This representation allows an easy
comparison of the respective probabilities at any time t.

Figure 2: Cumulative incidence curves of CML-related death
and death from other causes. Differences between the curves
represent probabilities of the particular events.

For the regression analysis on cause-specific hazards,
several covariates are used. Basic characteristics of the co-
variates are shown in Tables 1 and 2. Sex, Sokal score and
complete haematological response to treatment (CHR) are
categorical variables, whereas age at diagnosis, leukocyte
count (Leu) and haemoglobin level (Hgb) at diagnosis are
continuous. For purposes of the analyses, in order to make
interpretation of results easier, these continuous variables
were converted into dichotomous. The cut-off levels were
set (by the medical staff) to 45 years of age, 50× 109/l of
leukocytes and 110g/l of haemoglobin.

Table 2: Basic characteristics of the categorical covariate vari-
ables. One value is missing in the Sokal score and the complete
haematological response to treatment (CHR) variable.

N %

Sex
male 67 57
female 51 43

Sokal score
1 46 39
2 46 39
3 25 21

CHR
yes 73 62
no 44 37

Table 3 reports the results of the univariate Cox re-
gression analysis with single covariates sex, age, Leu, Hgb,
Sokal score and CHR. It is evident that the blood count
has strong effect on the rate of occurrence of CML-related
death. The leukocyte level above 50 negatively affects
overall survival of the CML patients (hazard ratio (HR)
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Table 3: Relative risk estimation for the CML-related death and death from other causes with single covariates, based on the
Cox regression model on the cause-specific hazard functions.

CML other
exp(β̂CML) p−value exp(β̂other) p−value

Sex (male) 1.30 0.55 0.52 0.20
Age (≥ 45) 1.40 0.46 1.43 0.51
Leu (≥ 50) 2.52 0.09 2.31 0.19
Hgb (≥ 110) 0.42 0.04 0.40 0.08
Sokal score 1.43 0.19 2.74 0.004
CHR (yes) 0.33 0.01 0.81 0.70

Table 4: Relative risk estimation for the CML-related death and death from other causes for the Sokal score represented as a
pair of dummy variables. Based on the Cox regression model on the cause-specific hazard functions.

CML other
exp(β̂CML) p−value exp(β̂other) p−value

Sokal score 2 versus 1 1.59 0.35 4.10 0.08
Sokal score 3 versus 1 2.05 0.20 8.92 0.007
Sokal score 3 versus 2 1.29 2.17

= 2.52, p = 0.09), while the effect of haemoglobin level
above 110 is protective (HR = 0.42, p = 0.04). Patients
who achieve complete haematological response to treat-
ment, are in a lower risk of death due to CML (HR =
0.33, p = 0.01). There is no evidence of any dependence
of CML-related death rates on sex, age or the Sokal score.

On the other hand, the strongest effect on the rate
of occurrence of other causes of death is achieved by the
Sokal score. The hazard ratio for each extra point in the
Sokal score is 2.74 (p = 0.004). Thus, an individual hav-
ing Sokal score 3 has 7.54−times higher risk of death due
to other causes compared to the individual having Sokal
score 1 (the estimated coefficient β̂other = 1.01). In case
of the Sokal score, it is not important whether the variable
is coded as a single covariate (with three categories) or as
a pair of dummy variables when modeling. The results
are similar (see Table 4).

The effect of haemoglobin level above 110 is the same
for other causes of death as for the CML-related death:
haemoglobin level above 110 lowers the risk (HR = 0.40,
p = 0.08). There seems to be no effect of sex, age, leuko-
cyte count and the achievement of complete haematologi-
cal response to treatment on the risk of death from other
causes than CML. However, the results for the sex covari-
ate are interesting. Although the effects are not statis-
tically significant (p = 0.55 and p = 0.20 for CML and
other type of death, respectively), they are opposite for
the two types of failure.

In case of CML-related death, males may be in higher
risk than females (HR = 1.30), while in case of other types
of death, the hazard ratio for males relative to females is

0.52. Sex is the only covariate with such opposite effects
on the two types of failure. In the multivariate Cox re-
gression model, no combinations of the above mentioned
six covariates prove to have statistically significant effects
on the risk of failure due to any of the competing risks.

Table 5: Contingency table with counts of patients according
to the Sokal score classification and the cause of death.

cause
Sokal score CML other alive

1 7 2 37
2 10 7 29
3 6 7 12

Based on the results of the Cox regression, predicted
cumulative incidence curves can be obtained. Figures 3
and 4 show the predicted occurrence of CML-related death
and death from other causes for the groups of patients
with and without complete haematological response to
treatment and for the Sokal score classification. For the
CML-related death, the CHR achievement has a strong
protective effect: The predicted probabilities of failure due
to CML after ten years (120 months) are P = 0.15 and
P = 0.38 for the "CHR yes" and the "CHR no" groups,
respectively. On the other hand, there seems to be no re-
lationship between the CHR outcome and failure due to
other causes than CML, which is to be expected. For both
CHR groups, the predicted probability of death from other
causes after ten years from the diagnosis is relatively low
(P = 0.15). The CHR achievement after the Interferon
treatment thus may be used as a reliable predictor of lower
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Figure 3: Predicted cumulative incidence functions for CML-related death (left) and death from other causes (right), for
patients with and without complete haematological response to treatment, based on the proportional hazards model for the
cause-specific hazards.

Figure 4: Predicted cumulative incidence functions for CML-related death (left) and death from other causes (right), for the
Sokal score classification, based on the proportional hazards model for the cause-specific hazards.

risk of death due to CML. The effect of the Sokal score
classification is ambiguous. While the score should iden-
tify high- and low-risk CML patients, it seems to be pre-
dictive only for the failure due to other causes than CML.
The predicted probabilities of death from other causes af-
ter ten years are P = 0.35 and P = 0.07 for the Sokal
score 3 group and the Sokal score 1 group, respectively.
The predicted probabilities of death from CML after ten
years are much closer one to another for all the groups –
P = 0.28 for Sokal score 3 and P = 0.18 for Sokal score
1. For a better insight in the connection of Sokal classifi-
cation to the different causes of death, contingency table
with counts of patients is included (see Table 5). Other
predicted cumulative incidence curves are not presented
here, as they can easily be obtained from the results of
the Cox regression (see Table 3).

To compare the results of the regression on the cause-
specific hazards (shown in Table 3) and the regression on

the cumulative incidence functions, the Fine and Gray
model has been fitted to the data. The results of the Fine
and Gray regression are reported in Table 6.

Both the regression models produce similar results for
the CML data, thus the main difference between the two
models is the interpretation of the results. Cause-specific
hazards obtained from the Cox regression model may be
translated into cumulative incidence curves, but the pro-
portionality is lost by this process and the covariate effects
on the cumulative incidence curves can no longer be ex-
pressed by a simple number [4]. Therefore, to determine
the effect of a covariate on the cumulative incidence of an
event of interest, the Fine and Gray approach using the
proportionality of the subdistribution hazards is a better
choice.

Table 7 reports the results of the Gray test of the cu-
mulative incidence functions compared with the results
of the log-rank test of the Kaplan-Meier estimates of the
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Table 6: Relative risk estimation for the CML-related death and death from other causes with single covariates, based on the
Fine and Gray regression model of the cumulative incidence functions.

CML other
exp(β̂CML) p−value exp(β̂other) p−value

Sex (male) 1.42 0.41 0.51 0.17
Age (≥ 45) 1.32 0.55 1.39 0.52
Leu (≥ 50) 2.36 0.12 2.14 0.23
Hgb (≥ 110) 0.46 0.06 0.49 0.16
Sokal score 1.31 0.32 2.58 0.004
CHR (yes) 0.35 0.01 1.02 0.98

survival functions. The tests are computed for all the
stratification groups used in the regression models.

The Gray test results are shown for both the compet-
ing events, the CML-related death and the death from
other causes. For the log-rank test, two schemes of cen-
soring are used: (1) the two types of death are considered
separately, i.e. when focusing on the CML-related death,
patients experiencing death from other causes are cen-
sored as well as patients experiencing no event (and vice
versa when focusing on the death from other causes), (2)
only event is considered – death from any cause, the dif-
ferences in types of death are ignored, and censored are
only those patients who have not died by January 2010.
The censoring scheme (2) completely ignores not only the
competing risks methods, but also the possibility of dif-
ferent causes of events.

Table 7: P-values resulting from the Gray test of the cumula-
tive incidence functions (for competing risks) and the log-rank
test of the Kaplan-Meier estimates of the survival functions
(no competing risks). *Any = Death from any cause (censor-
ing scheme (2)).

Gray test Log-rank test
CML other CML other any*

Sex 0.42 0.17 0.46 0.07 0.59
Age 0.53 0.52 0.76 0.33 0.40
Leu 0.11 0.22 0.16 0.14 0.04
Hgb 0.06 0.14 0.08 0.11 0.02
Sokal score 0.59 0.02 0.66 0.008 0.03
CHR 0.01 0.93 0.01 0.60 0.02

Unfortunately, this approach might be quite often in
clinical studies where the information about the cause the
patients’ death are not available. While the results of the
Gray test and the log-rank test of the scheme (1) censor-
ing are similar, the results for the scheme (2) differ sub-
stantially. The scheme (2) finds statistically significant
differences in overall survival between groups of patients
stratified by Leu, Hgb, Sokal score and CHR.

However, these results are misleading, as the differ-
ences between the groups are limited to the "overall

death" only and ignore the influence of the different causes
of events. The results in Table 7 show the importance of
careful censoring and the need of using proper methods of
analyses.

5 Conclusion

The competing risks model and statistical methods for
nonparametric analysis are recalled in this paper. The
bias in the standard Kaplan-Meier estimator and the need
for specific methods for inference on competing risks data
is explained. The data set of Chronic Myeloid Leukemia
(CML) patients from the Clinic of Haemato-oncology of
the University Hospital in Olomouc is analyzed. The over-
all survival probability and risk factors of two types of fail-
ure (death due to CML and death from other causes) are
assessed. The interesting role of sex and the Sokal score
classification on the overall survival of the CML patients
is discussed. Predicted probabilities of the two types of
failure with stratification based on the chosen risk factors
are shown. Results of the specific methods designed for
the competing risks analysis are compared with the results
of the standard survival analysis methods. The effect of
the Sokal score classification is found ambiguous. While
the score should identify high- and low-risk CML patients,
it seems to be predictive only for the failure due to other
causes than CML. The use of the Sokal score should be
considered more thoroughly.
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