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Abstract

Background: Microarray technologies are used to
measure the simultaneous expression of a certain set
of thousands of genes based on ribonucleic acid (RNA)
obtained from a biological sample. We are interested in
several statistical analyses such as 1) finding differentially
expressed genes between or among several experimental
groups, 2) finding a small number of genes allowing for
the correct classification of a sample in a certain group,
and 3) finding relations among genes.
Objectives: Gene expression data are high dimensional,
and this fact complicates their analysis because we are
able to perform only a few samples (e.g. the peripheral
blood from a limited number of patients) for a certain
set of thousands of genes. The main purpose of this
paper is to present the shrinkage estimator and show its
application in different statistical analyses.

Methods: The shrinkage approach relates to the shift of
a certain value of a classic estimator towards a certain
value of a specified target estimator. More precisely, the
shrinkage estimator is the weighted average of the classic
estimator and the target estimator.
Results: The benefit of the shrinkage estimator is that it
improves the mean squared error (MSE) as compared to
a classic estimator. The MSE combines the measure of
an estimator’s bias away from its true unknown value and
the measure of the estimator’s variability. The shrinkage
estimator is a biased estimator but has a lower variability.
Conclusions: The shrinkage estimator can be considered
as a promising estimator for analyzing high dimensional
gene expression data.
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1 Introduction

In this section we describe microarray technology, and
mention several types of hypotheses for microarrays to-
gether with some problems which arise with microarray
data.

1.1 Microarray Technology

Microarray technology is an important element in
gene expression assessment. Basically, we can describe
microarray as a solid wafer which contains from a
few thousand to millions of one-stranded segments of
deoxyribonucleic acid (DNA) nucleotides in precisely set
positions. The positions are often called spots or probes.
These spots correspond to individual genes. The mode of
microarray production is described e.g. in [1].

Gene expression measurement is conducted by extract-
ing ribonucleic acid (RNA) from a biological sample, e.g.
the peripheral blood of a patient or a tuberculous tissue.
The extracted RNA sample is marked with a fluorescent
dye and spread on a microarray chip. During a process
called hybridization the RNA sample binds with the
microarray thanks to the complementarity of nucleotides.

The RNA concentration on a microarray is determined
using fluorescence. The microarray is scanned using
a special scanner and the output has the form of a
two-dimensional scanned image. The scanned image is
formed by pixels with certain intensities. A group of
neighbouring pixels making up the spot corresponding to
the fluorescent activity of a specific gene. The spots must
be targeted using a specialized image analysis software.
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After performing complicated preprocessing tech-
niques, we obtain summarized values of gene expression
for each spot. For more information about the techniques
we refer the reader to [2] or [3].

Because we have usually several comparable biological
samples, the final data of gene expressions are in the form
of matrix. The matrix’s rows typically correspond to in-
dividual genes and the columns correspond to individual
samples (e.g. patients) of gene expression profiles from
several microarrays.

1.2 Types of Analysis for Microarrays

Several types of statistical inferences are possible in
the context of information extracted from microarrays:

(a) detection of differentially expressed genes be-
tween/among several experimental sample groups
(e.g. comparing gene expression of patients with a
tumour and without a tumour),

(b) classification of an unknown sample in a specific
group based on the gene expression profile in the sam-
ple (e.g. classification of a patient with cancer, i.e.
confirmation of the onset of cancer),

(c) discovery of new/unknown groups of genes (e.g. new
tumour subtype),

(d) identification of genes which are important for a given
group (e.g. for myocardial infarction),

(e) creation of gene networks (description of relations
among/between genes in evolution of cancer).

A broad overview of statistical analysis for gene expression
data analysis can be found in [3] or [4].

1.3 Problem of High Dimension

The problem with certain kinds of microarray tech-
nology, e.g. whole-genome microarrays, is high dimen-
sionality due to the fact that there is a greater number
of variables (genes) than observations (samples). If we
consider p to be the number of variables and n to be the
number of observations this means n � p. Problems as-
sociated with high dimensionality include the following,
for example:

• the selection of relevant differentially expressed genes,
i.e. the problem of multiple testing (see [5]),

• tractability of linear discriminant analysis (LDA)
used for classification purposes. LDA requires an es-
timator of the inverse covariance matrix, which, how-
ever, does not exist for the data which we have in this
case (see [6]).

2 Shrinkage Approach

In this section we present a shrinkage approach
which can help deal with the high dimensionality of gene
expression data. The approach results in an estimator
based on reducing the mean squared error (MSE) com-
pared to a classic estimator.

Firstly, we present the origin of the shrinkage approach,
i.e. James-Stein estimator (JSE) which is motivated by
the estimation of an unknown mean vector for multivari-
ate normal distribution based on 1 observation from this
distribution. Next, we mention the optimal value of the
JSE’s parameter which leads to the lowest value of the
MSE. This optimal value also gives the estimator the
shrinkage attribute. Finally, a generalization for both the
JSE and its optimal value is mentioned.

2.1 Mean Squared Error (MSE)

Let us suppose we have a random sample from
a nondegenerated distribution with an unknown one-
dimensional parameter θ ∈ R. We calculate an estima-
tor θ̂ ∈ R on the basis of our data. Then the MSE (or
quadratic risk) for the parameter θ̂ is defined as

MSE(θ̂) = E(θ̂ − θ)2. (1)

Expression (1) can be rewritten in a different way. We
expand (θ̂ − θ)2 in (1) and "add-subtract" (Eθ̂)2. After
using var(θ̂) = E(θ̂)2−(Eθ̂)2 and θ = Eθ and Eθ2 = (Eθ)2

we get an equivalent form of (1)

MSE(θ̂) = var(θ̂) + (Bias(θ̂, θ))2. (2)

In (2) the term Bias(θ̂, θ) = E(θ̂ − θ) represents the
accuracy of estimator θ̂ with respect to the unknown
parameter θ.

We can see from (2) that (1) for MSE of estimator θ̂
is the sum of its variance and the square of its bias. If
Bias(θ̂, θ) = 0 we say that estimator θ̂ is the unbiased
estimator of parameter θ. If Bias(θ̂, θ) 6= 0 we say that
estimator θ̂ is the biased estimator of parameter θ.

The idea for introducing the MSE is that allowing a
small bias for estimator θ̂ of parameter θ can substantially
improve its variability var(θ̂). For more details we refer
the reader to [7].

2.2 James-Stein Estimator (JSE)

The JSE, also known as the Stein estimator or
shrinkage estimator, is an estimator which first appeared
in [8]. The motivation for this estimator is the following.

Let us assume that p ∈ N and we have realization
of random vector X = (X1, . . . , Xp) ∈ Rp. Let vec-
tor X follow p-dimensional normal distribution with
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unit covariance matrix I and unknown mean vector
µ = (µ1, . . . , µp) ∈ Rp. The task is to estimate unknown
vector µ.

One estimator of µ is called the maximum likelihood
estimator (MLE). We can say it is a classic estimator
because it means that we estimate µ by realization x of
X. This estimator is in the form

µ̂MLE = X

Notation is in the scalar form, i.e. each component µi

of vector µ is estimated using the value of the respective
component Xi of vector X, i = 1, . . . , p.

Another µ estimator in which we are particularly in-
terested is called the James-Stein estimator (JSE). This
estimator is in the form

µ̂JSE = (1− θp(X))X

where

θp(X) =
p− 2

‖X‖2
, ‖X‖2=

p∑
i=1

X2
i .

For p > 2 we can see that the shrinkage factor θp(X)
is positive because the numerator and denominator are
always positive.

The reason JSE is called the shrinkage estimator
is that we implicitly suppose that θp(X) ∈ (0, 1). In
this case each component Xi of vector X from MLE is
proportionally shrunken by the same constant 1− θp(X)
closer to respective zero value component of vector X.

It can also be observed that in MLE we use "pure" in-
formation represented by the individual component while
in JSE we borrow information from the individual compo-
nent together with information contained in all the com-
ponents.

2.3 MSE of JSE

Introducing the shrinkage factor θp(X) results in a
lower MSE. More precisely, we have some kind of norm
for MSE because we are dealing with estimation of an
unknown p-dimensional parameter µ. In [8] Stein uses

MSEp(µ̂) = E(µ̂− µ)T (µ̂− µ) (3)

where µ is the true value of the mean and µ̂ is the estima-
tor of µ based on observed data. Expression (3) for MSEp

can be further rewritten as

MSEp(µ̂) = E

( p∑
i=1

(µ̂i − µi)
2

)
. (4)

Thus, MSE in case of estimation for p-dimensional para-
meter µ is the sum of MSEs for individual components of

µ. According to the expression (2) we can rewrite (4) as

MSEp(µ̂) =

p∑
i=1

{
var(µ̂i) + (Bias(µ̂i, µi))

2
}
. (5)

Thus, the MSE of estimator µ̂ equals the sum of variances
and squared biases of its individual components. Let’s
demonstrate the computation of the MSE for MLE and
JSE.

1) If µ̂ is MLE then

Bias(µ̂MLE
i , µi) = E(Xi − µi) = 0

where we derive benefit from EXi = µi. Thus, the MLE
is unbiased estimator. Similarly, we have

var(µ̂MLE
i ) = var(Xi) = 1.

This implies according to (5) that MSEp(µ̂MLE) = p.

2) If µ̂ is JSE then

Bias(µ̂JSE
i , µi) = E((1− θp(X))Xi − µi)

= −E(θp(X)Xi) 6= 0

where we use EXi = µi. Thus, JSE is biased estimator in
contrast to the unbiased MLE.

Computation of the MSE for JSE is not as straightfor-
ward as for the MLE. So we restrict ourselves to stating
that

MSEp(µ̂JSE) = p− (p− 2)2E

(
1

‖X‖2

)
.

We can see that for p > 2

MSEp(µ̂JSE) < MSEp(µ̂MLE)

because ‖X‖2 > 0. Especially, for large p we can achieve
a great improvement of MSE for JSE in contrast to MSE
for MLE. However, the "price" we pay for lower MSE of
JSE is bias.

2.4 The Optimal Shrinkage Factor

We can also compute the optimal shrinkage factor
which guarantees the lowest possible MSE. This is given
by maximizing each summand in MSEp(µ̂JSE). If the
shrinkage factor θp(X) in µ̂JSE is denoted as ϕ then ac-
cording to (5) we have

p∑
i=1

{
(1− ϕ)2var(Xi) + (E((1− ϕ)Xi − µi))

2
}

which is maximized by taking derivative with respect to
shrinkage factor ϕ. This leads to the optimal shrinkage
factor

ϕ? =

( p∑
i=1

var(Xi)

)/( p∑
i=1

EX2
i

)
where we use var(Xi) + (EXi)

2 = EX2
i .
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2.5 The General Form of JSE

We have introduced only the basic version of JSE.
If we again suppose p-dimensional normality for random
vector X as in the subsection 2.2, the general form of JSE
can be written as

θ̂shrink = (1− λ)θ̂ + λθ̂target,

i.e. the shrinkage estimator θ̂shrink is the weighted average
of the classic estimator θ̂ and the target estimator θ̂target
chosen by us. In case of basic JSE θ̂ is µ̂MLE and θ̂target
is the vector of p zeros.

The constant λ ∈ (0, 1) is the shrinkage factor, i.e. the
weight which is borrowed from the classic estimator and
obtained by target estimator. In case of the basic JSE
we have λ = θp(X).

The estimator θ̂shrink is useful because it results in a
lower MSE previously represented by (5).

We can compute the optimal shrinkage factor which
minimizes the MSE. In case of unbiased classic estima-
tor and nonrandom target estimator we have the optimal
shrinkage factor with respect to the MSE in the form

λ? =

{ p∑
i=1

var(θ̂i)

}/{ p∑
i=1

E(θ̂i − θ̂targeti )2
}
. (6)

For the optimal shrinkage factor where the target estima-
tor is random and the classic estimator is biased we refer
the reader to [9].

2.6 Several Generalizations of JSE

In [10] James and Stein show that JSE has a lower
MSE for an arbitrary constant c ∈ (0, 2(p − 2)) which
is used in the nominator of θp(X). In [11] Baranchik ob-
serves that the shrinkage parameter 1−θp(X) can be neg-
ative and considers positive part of JSE for improving the
MSE, i.e.

µ̂JSE+ = (1− θp(X))+X (7)

where t+ = t for t ≥ 0 and t+ = 0 in other cases.

In [12] Bock expands JSE of µ for a situation when
vector X from p-dimensional normal distribution has an
arbitrary known or unknown positive definite covariance
matrix V . According to (7), general JSE can be written
in the form

µ̂JSE+,V =

(
1− p̂− 2

XTV −1X

)+

X (8)

where V −1 is inverse of the covariance matrix V and p̂ is
effective dimension given by the trace of matrix V divided
by the maximum eigenvalue of V . For p̂ > 2 the JSE

has a lower MSE than the MLE. Bock also shows that
substituting of p̂−2 in the nominator of the fraction in (8)
by an arbitrary constant ĉ ∈ (0, 2(p̂− 2)) leads to a lower
MSE for the JSE than for MLE. For more information
about the generalization of the JSE we refer the reader to
[7].

3 Applications of the Shrinkage
Approach

In the subsection 1.2 we described several types of hy-
potheses in the context of microarrays. In this section we
present shrinkage approach as a solution for some of them.

We desribe shrinkage version of the clustering algorithm
K-means method corresponding to the hypothesis (c) or
(d), shrinkage version of the t-statistic corresponding to
the hypothesis (a), shrinkage version of the mutual esti-
mation corresponding to the hypothesis (e) and shrinkage
version of the covariance matrix corresponding to the hy-
pothesis (b) or (e).

3.1 Shrinkage K-Means Method

In [13] Gao and Hitchcock introduce a shrinkage
version for K-means clustering algorithm as an improve-
ment of this when n � p. The method is applied to
Saccharomyces cerevisiae yeast gene expression data.
The data contain 78 genes, where each gene is supposed
to be differentially expressed in exactly one of 5 groups
(5 cell cycle phases). The expression of each gene is
measured 18 times at 7-minute intervals.

The shrinkage K-means algorithm proceeds as follows.
We have n observations divided into K groups, where
K < n. Each observation has p-dimensional normal dis-
tribution with mean vector µi and covariance matrix Vi,
i = 1, . . . ,K. We choose randomly K observations which
serve as initial estimates for µi’s, i.e. group centroids. We
compute the overall centroid X as the overall mean from
all group centroids Xi. Each centroid Xi is then shrunken
to the overall centroid X as

X
JSE+,V

i = X + (1− θ(p̂, Vi))+(Xi −X)

where

θ(p̂, Vi) =
p̂− 2

(Xi −X)TV −1
i (Xi −X)

and p̂ is the effective dimension given similarly as in
(8) as the trace of matrix Vi divided by the maximum
eigenvalue of Vi.

In comparison to the classic K-means algorithm the
shrinkageK-means algorithm has better accuracy as given
by the Rand Index. The Rand Index measures concor-
dance between the true underlying clustering structure
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and the result produced by a clustering algorithm. For
more details we refer the reader to [13].

3.2 Shrinkage t-Statistic

In [14] Opgen-Rhein and Strimmer introduce a shrink-
age version of t-statistics in case of n � p. Shrinkage is
applied to empirical variances ν1, . . . , νp from gene expres-
sions for each of p genes. Then the median νmedian from all
empirical variances is computed. The shrinkage estimator
for νk is proposed in the form

ν?k = (1− λ)νk + λνmedian, (9)

k = 1, . . . , p, which is the weighted average of the target
estimator for variance (νmedian) and the classic estimator
for variance (νk). The optimal shrinkage parameter λ̂?
with respect to the MSE is in the form

λ̂? = min

(
1,

∑p
k=1 v̂ar(νk)∑p

k=1(νk − νmedian)2

)
. (10)

Estimator (10) differs from estimator (6). Here λ̂? is
composed of a minimum of 1 and the sample estimator
of (6). In (6), the numerator and denominator are
estimated from data from its sample counterparts. Using
the minimum in (10) prevents the shrinkage parameter
from "overflowing", i.e. if the estimator of (6) present in
(10) is larger than 1 then λ̂? = 1.

Shrinkage t-statistic for comparison of two independent
groups of samples is in the form

t?k =
xk1 − xk2√

ν?k1/n1 + ν?k2/n2
(11)

where xk1 and xk2 represent group averages of gene
expressions for the k-th gene, ν?k1 and ν?k2 represent the
shrunken group variances of gene expressions for k-th
gene and n1 and n2 represent the number of samples in
each group for the k-th gene.

The shrinkage t-statistic (11) is a compromise between
standard t-statistics (λ = 0 in (9)) and differences of
means t-statistics (λ = 1 in (9)).

The shrinkage t-statistics (11) and several competing
methods, such as moderated t-statistics, Efron t-statistics
and Cui t-statistics (see [15]), are performed on three gene
expression data with different "setups" for variabilities of
individual genes (two Affymetrix spike-in studies and one
HIV study). The aim is to find the "true discovery rate" of
genes, i.e. genes which are known to be truly differentially
expressed among all differentially expressed genes from a
statistical point of view. The shrinkage t-statistic has the
best performance. For more details we refer the reader to
[14].

3.3 Shrinkage Mutual Information

In [16] Hausser and Strimmer introduce a shrinkage
version of mutual information in case of n � p. The
method is applied for constructing association net-
work among genes for Escherichia coli gene expression
data. The data consist of 102 known differentially
expressed protein coding genes of human superoxid
dismutase whose expression is measured at time 0, 8,
15, 22, 45, 68, 90, 150 and 180 minutes after induc-
tion by dosage of isopropyl-beta-D-thiogalactopyranoside.

The gene association network is constructed via Algo-
rithm for Reconstruction of Accurate Cellular NEtworks
(ARACNE). The algorithm is based on mutual informa-
tion computed for each pair of genes and model selection
is carried out via information processing inequality
applied to all gene triplets (see [17]).

Based on whole gene expression data of Escherichia
coli, gene expressions for each gene are discretized into K
common distinct categories of expression. For each pair
of discretized genes we obtain K ×K contingency table.

The mutual information MI(A,B) between discrete
random variables A and B (i.e. between discretized ex-
pressions of genes) is defined as

MI(A,B) =
K∑
i=1

K∑
j=1

θij
(
ln(θij)− ln(θiθj)

)
(12)

where θij is the joint relative frequency for the (i, j)-th
combination of row category i for the random variable
A and column category j for the random variable B
in K × K contingency table. Relative frequencies
θi and θj correspond to marginal relative frequency
of i-th row category and j-th column category, respec-
tively. The task is the estimation of θij , θi and θj for (12).

We restrict ourselves to estimation of joint relative fre-
quencies θij and especially with respect to (12) repre-
sented by the joint Shannon entropy. The joint Shannon
entropy is given by

H(A,B) = −
K∑
i=1

K∑
j=1

θij ln(θij) (13)

and measures the uncertainty associated with the dis-
cretized random variables A and B. When H(A,B) is
higher, the uncertainty is also higher.

The classic estimator of θij in (13) is MLE, i.e.

θ̂MLE
ij =

yij
n

where yij , i = 1, . . . ,K, j = 1, . . . ,K is the abso-
lute frequency of the (i, j)-th category in the K × K
contingency table and n is the total sum of absolute
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frequencies from all cells in the contingency table. The
form of θ̂MLE

ij is based on the assumption of multinomial
distribution for cell counts in theK×K contingency table.

The disadvantage of θ̂MLE is that it underestimates
(13), leading to a biased estimator of (12). The reason
is that the K × K contingency table is sparse, i.e. the
majority of cell frequencies are equal to zero. If a cell
with zero frequency that represents zero summand in (13).

We can also estimate relative frequencies by shrinkage
estimator in the form

θ̂shrinkij = (1− λ)θ̂MLE
ij + λtij

where tij > 0 is the (i, j)-th term from the target
distribution

∑K
i=1

∑K
j=1 tij = 1. The role of target

distribution is to regularize the contingency table, i.e.
zero cell counts are "converted" to nonzero counts and
this decreases underestimation of (13). Typically, target
distribution is chosen as uniform, i.e. tij = 1/L where L
is the number of cells in the K ×K contingency table.

According to equation (6) the optimal shrinkage inten-
sity λ̂? with respect to the MSE is given by

λ̂? =

( K∑
i=1

K∑
j=1

v̂ar(θ̂MLE
ij )

)/( K∑
i=1

K∑
j=1

(tij − θ̂MLE
ij )2

)
where the nominator and denominator are estimated
without bias from data.

The shrinkage estimator for estimation of entropy has
a performance similar to the Nemenman-Shafee-Bialek
(NSB) estimator for entropy (see [18]). However, in con-
trast to the NSB estimator the shrinkage estimator is com-
putationally much faster and fully analytical. For more
information we refer the reader to [16].

3.4 The Shrinkage Covariance Matrix

In [9] Schäfer and Strimmer introduce a shrinkage
estimator of the population covariance matrix Σ in case of
n � p. The method uses the same Escherichia coli data
as in the previous part, related to shrinkage estimation
of mutual information. In this case we want to establish
the gene network among 102 preselected genes.

The construction of the gene association network
is based on a p × p matrix of partial correlations for
gene expression data. Partial correlation measures the
strength of the relationship between genes which is free
of the influence of other genes. If partial correlation is
larger than a certain value (e.g. larger than 0.8) then we
can suppose there is an association between the genes.

Values of partial correlations can be computed from va-
lues of the inverted covariance matrix. For computing of

the inverted covariance matrix Σ−1 we need an estimator
of the population covariance matrix Σ. Two classic esti-
mators for Σ are MLE and unbiased estimator. In other
words, the elements σij of Σ are estimated by elements
sij from the sample covariance matrix S where

sij =
1

df

n∑
k=1

(xik − x̄i)(xjk − x̄j).

Here xik is the expression of the i-th gene in the k-th
sample, xjk is the expression of the j-th gene in the k-th
sample, xi is the average expression of the i-th gene
across all samples and xj is the average expression of the
j-th gene across all samples, i = 1, . . . , p, j = 1, . . . , p,
k = 1, . . . , n. If df = n− 1 we have an unbiased estimator
S for Σ. In case of df = n we have MLE for Σ.

We restrict our attention to the unbiased estimator S.
The problem of the estimator S of the covariance matrix
is that it becomes singular in case of n � p as shown in
[19]. Thus, it is not possible to make its sample inversion
S−1.

The singularity of matrix S can be eliminated by an
estimator based on JSE. The elements σij of Σ are esti-
mated by sample covariance matrix with the elements

s?ij = (1− λ)sij + λtij (14)

where i = 1, . . . , p, j = 1, . . . , p. In equation (14), sij is
the unbiased estimator of σij , tij is an element of target
matrix T which is regular and of the same dimension as
matrix S. The shrinkage constant λ is supposed to be
derived from interval (0, 1). An advantage of introducing
variant of JSE is not only that it results in a lower MSE
but also that it leads to regularization of the unbiased
estimator of sample covariance matrix S.

The optimal shrinkage intensity λ̂? for the nonrandom
target matrix T = (tij) and the singular unbiased estimate
of covariance matrix S = (sij) is

λ̂? =

( p∑
i=1

p∑
j=1

v̂ar(sij)

)/( p∑
i=1

p∑
j=1

E(sij − tij)2
)

where the nominator and denominator are estimated
without bias from the data. Schäfer and Strimmer
also examine several types of shrinkage targets. They
especially pay attention to diagonal covariance target
matrix with unequal variances computed from estimate
S, i.e. tij = sij for i = j otherwise tij = 0. This
represents a compromise between simple and complicated
estimates. For more information we refer the reader to [9].

In [6] Guo et al. use a shrinkage estimator of covariance
matrix for LDA in case of n� p. The LDA regularized in
this way is then combined with the nearest shrunken cen-
troids method (see [20]). Performance of regularized dis-
criminant analysis is tested on nine gene expression data
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and has for example similar performance as the support
vector machines method (see [21]).

4 Conclusion

In this paper we present the shrinkage approach.
This is a promising approach for improving gene expres-
sion data analysis where the number of genes is much
higher than the number of samples.

The shrinkage approach leads to the shrinkage es-
timator, which combines information from the classic
estimator and a specified target estimator through a
weighted average of these. The advantage of the shrink-
age estimator is a lower MSE than for a classic estimator.
The shrinkage estimator is biased but has a substantially
lower variability than the classic estimator which is
unbiased. This is valid especially for high-dimensional
problems.

The shrinkage approach is applied to K-means algo-
rithm, two-sample t-test, estimation of mutual informa-
tion and estimation of covariance matrix. We can see that
the shrinkage estimator is reasonably simple and provides
a certain type of regularity. Regularity is in the sense
of remedy of covariance matrix (from singular matrix to
regular matrix) or sparsity of contingency table (from a
higher underestimated value of the true entropy to a less
underestimated value of the true entropy).
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